USF Professor Gives Historical Look at Physiology and WWII Air War

Donna Krupa
(301) 634-7209
dkrupa@the-aps.org 

USF Professor Gives Historical Look at Physiology and WWII Air War

BETHESDA, Md. (April 7, 2008) World War II-era physiologists helped solve physiological problems related to flight, research that helped pave the way for an Allied victory in the air, according to Jay B. Dean, of the University of South Florida College of Medicine.

Dr. Dean has prepared a presentation on his historical research for Monday, April 7, at the Experimental Biology conference in San Diego. His presentation is entitled “High altitude physiology research and training platforms used by American physiologists during World War II: Innovative altitude chambers and high flying bomber aircraft.”

Dr. Dean is writing a book on the stories behind the advances the Allies made in aviation physiology research during the war. To hear an extended audio interview on this topic with Dr. Dean, go to www.lifelines.tv and click on Episode 8.

Some early highlights of World War II Aviation Research:

  • Dr. Randy Lovelace of the Mayo Clinic, a leader in aviation physiology research during the war, studied the opening shock of a parachute by jumping from a plane at 40,200 feet on a static line, which opened his parachute immediately upon jumping. The force of deceleration as Lovelace left the speeding B-17 and his chute opened, blew off his gloves and knocked him unconscious. One of his hands suffered frostbite as a result of the jump, but he recovered.

  • Physiologists later experimented with 150-pound dummies to determine opening shocks at varying heights, from planes traveling varying speeds.

  • Still later, physiologists trained a 145-pound St. Bernard dog, Major, to parachute -- simulating the jump of a man. Major wore protective clothing and an oxygen mask and dog paddled during his descent.

Flight Still in Infancy

At the outset of the war, aircraft were neither pressurized nor heated, but air crews flew as high as possible to avoid ground fire and enemy fighters. Flying at 25,000-30,000 feet, roughly the height of Mount Everest, the crews suffered hypoxia from the lack of oxygen and decompression sickness from the low pressure, among other ills.  Long range bombing missions could last for up to 8 to 10 hours under these grueling conditions.

Physiologists performed numerous experiments in hypobaric chambers to resolve these problems. These sealed chambers, also called high altitude chambers, mimic the low oxygen and low pressure of high altitudes.

At the beginning of the war in Europe, when physiologists were anxious to get to work and there were only three high altitude chambers in the U.S., they briefly considered using the elevators in the Empire State Building to study rapid changes in pressure. That suggestion never came to fruition, and U.S. scientists were able to build enough high altitude chambers quickly to get the research underway.

Among the problems the physiologists were able to work out using altitude chambers:

  • Decompression sickness, in which nitrogen bubbles form in the blood and tissue, can be reduced by breathing pure oxygen before takeoff and during ascent. This reduces the amount of nitrogen in the blood and tissues and so reduces bubble formation. This technique is still used today, including by astronauts prior to a space walk.

  • Fliers could survive rapid decompression of a pressurized airplane with enough time to put on an oxygen mask before losing consciousness. Planes had not been pressurized, in part because of concerns that fliers could not survive a rapid decompression.

  • Fliers could withstand a rapid decompression as long as their airway was open, allowing air to flow out of their lungs as the surrounding ambient pressure dropped.  If their airway was sealed, as during mid-swallow, then their lungs could “over-pressure” resulting in tearing of lung tissue. 

Physiological research also helped develop:

  • Ways to safely provide pressurized oxygen to air crews, helping them avoid hypoxia and decompression sickness.

  • Ways to develop better fitting oxygen masks to avoid fogging and freezing of goggles, common problems for pilots early in the war.

  • Ways to prevent blood from pooling in the lower extremities using a G-suit during violent dog-fighting maneuvers, thereby preventing “blackout” and loss of consciousness due to lack of blood flow to the brain.

 *****

NOTE TO EDITORS: The APS annual meeting is part of the Experimental Biology 2008 conference that will be held April 5-9 at the San Diego Convention Center. The press is invited to attend or to make an appointment to interview Dr. Dean. Please contact APS Communications Office at (301) 634-7253 or at communicationsoffice@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (www.The-APS.org/press) has been an integral part of this discovery process since it was established in 1887.

Related Items

Harvard Fatigue Laboratory Brought Aid & Comfort to America’s WWII GIs

Released September 13, 2010 - During World War II, researchers at the Harvard Fatigue Laboratory tested materials, food, and clothing that were ultimately used in preserving the lives and limbs of the nation’s 16 million soldiers, also known as GIs. The lab examined everything from the best forms of insulation for cold-weather combat to the metabolic effects of a diet consisting solely of “pemmican,” a foodstuff consisting of 50% protein and 50% fat.

What's Behind Hypertension?

Released August 1, 2011 - Each day we consume liquids in order to keep hydrated and maintain our body’s fluid balance. But just as a water balloon can get overtaxed by too much liquid, the human body is negatively affected when it retains fluids because it is unable to eliminate them properly. One of the key variables influencing how much fluid we hold in our bodies is ordinary table salt. The consequences of excess fluid retention can be severe, causing not only edema (excess of body fluid), but also high blood pressure (hypertension). What is the connection between fluid balance and hypertension? The 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels explores the topic in detail.

Could Processes to Regrow Hair & Feathers Lead to Clues to Restore Fingers & Toes?

Released May 10, 2012 - Could the mechanisms by which animals regenerate hair and feathers someday lead to clues that will help restore human fingers and toes? Our latest edition of Physiology has a review article that looks at possible routes that unlock cellular regeneration and the principles by which hair and feathers regenerate themselves. The article examines what’s known about regenerative biology and applies it to regenerative medicine, which is being transformed from fantasy to reality.

A Century of Learning About the Physiological Demands of Antarctica

Released June 11, 2012 - A century after British Naval Captain Robert F. Scott led a team of explorers on a quest to be the first to reach the South Pole, a new article examines what we have learned about the physiological stresses of severe exercise, malnutrition, hypothermia, high altitude, and sleep deprivation since then.

Physiology Researcher Using Batman to put POW! into Physiology

Released March 4, 2011 - Physiologist E. Paul Zehr writes about how he uses the Batman character to discuss the various components of exercise and physical training and illustrate how the body’s physiological systems respond.

From: 
Email:  
To: 
Email:  
Subject: 
Message:

~/Custom.Templates/Document.aspx