The American Physiological Society Press Release

press release logo

APS Contact: Donna Krupa

Email: dkrupa@the-aps.org

Phone: 301.634.7209

Twitter: @Phyziochick

Estrogen’s Effects on Fat Depends on Where It’s Located

Article published in the American Journal of Physiology-Endocrinology and Metabolism

Bethesda, Md. (July 26, 2013)—Women have long bemoaned the fact that they tend to store more fat than men, particularly after menopause. Although it’s well established that estrogen, the primary sex hormone present during women’s childbearing years, is responsible for this effect, exactly how estrogen exerts this influence has been unknown. Previous research has shown that body fat both absorbs estrogen and other sex hormones circulating in the blood as well as produces its own sex hormones, though researchers have been unsure what role that plays in fat accumulation. Also not completely understood is why women tend to accumulate fat in the stereotypical “pear” shape, with more fat in the buttocks and thighs—a shape that’s thought to be healthier than men’s stereotypical “apple” shape, with more fat around the belly.

Gathering clues to answer these questions, Kathleen M. Gavin and her colleagues at East Carolina University examined how estrogen locally affects fat accumulation in these key areas by slowly infusing the hormone into the buttocks and belly in overweight women while also giving them drugs or having them exercise to speed up fat breakdown. They found that estrogen’s effects on these fat deposits was highly dependent on the deposits’ specific location and the fat-burning interventions themselves.

The article is entitled “Estradiol Effects on Subcutaneous Adipose Tissue Lipolysis in Premenopausal Women are Adipose Tissue Depot Specific and Treatment Dependent” (http://bit.ly/1aKKegY). It appears in the June edition of the American Journal of Physiology: Endocrinology and Metabolism, published by the American Physiological Society.

Methodology

Gavin and her colleagues recruited 17 overweight-to-obese premenopausal women, all between the ages of 18 and 44 years old. After an initial visit to the lab to gather a variety of information on each study participant, including weight, height, percent fat and lean mass, and VO2 max (a measure of physical fitness), the researchers subjected each participant to a variety of interventions meant to speed up lipolysis, or fat breakdown/mobilization. Through probes inserted directly in the fat of the participants’ buttocks and abdomen, the researchers slowly infused two drugs, either individually or together, that encourage lipolysis. They also had participants perform a bout of exercise at an intensity similar to a standard exercise session. Such “submaximal” exercise is known to optimally break down fat.

Participants performed this exercise both by itself and while the drugs were being infused. To test the effects of estrogen, the researchers also performed each of these conditions while estrogen was also being slowly infused into participants’ fat deposits. To measure fat breakdown, the researchers used a technique called microdialysis to look for a marker (glycerol) left behind when stored fat is broken down for eventual production of energy.

Results

The researchers found that estrogen’s effects differed tremendously depending on the fat- mobilizing interventions themselves and where the fat deposit was located. For example, estrogen blunted fat breakdown in the abdomen if it was infused while a particular fat-mobilization drug called isoproterenol was also being infused, but it didn’t have this effect in the buttocks. When a second fat mobilizing drug was given along with the first while participants were at rest, fat breakdown didn’t change any further. However, when both drugs were injected together during exercise or when the volunteers exercised without the drugs, fat breakdown increased in the abdomen, but less so in the buttocks.

Importance of the Findings

These results suggest that estrogen has different effects within fat tissue depending on its location. Together, these effects could help maintain premenopausal women’s “pear” shape even in the face of exercise or other signals the body receives to break down fat. They could also help generate some new ideas on how estrogen in fat may influence why postmenopausal women tend to accumulate more fat in the abdomen.

The authors suggest that more research is necessary to better understand the mechanisms behind how and why estrogen acts in these differential ways.

Study Team

In addition to Kathleen M. Gavin, the study team also includes Elizabeth E. Cooper, Dustin K. Raymer, and Robert C. Hickner, all of East Carolina University.

NOTE TO EDITORS: To schedule an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209. The article is available online at http://bit.ly/1aKKegY.

 

Physiology is the study of how molecules, cells, tissues, and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first US society in the biomedical sciences field. The Society represents more than 11,000 members and publishes 14 peer-reviewed journals with a worldwide readership.

 


Related Items

Link Between Chronic Estrogen Exposure & High Blood Pressure

Released May 26, 2011 - Although the process by which estrogen induces high blood pressure in females is unclear, Michigan State University researchers have found that long-term estrogen exposure generates excessive levels of a compound, superoxide, which causes stress in the body.

Obese Post-Menopausal Women Outperform Normal Weight Counterparts in Key Tasks

Released October 13, 2011 - Obesity has been associated with cognitive decline, characterized by a deterioration of mental abilities that involve memory, language, and thought-processing speed. But in a study of 300 post-menopausal women, obese participants performed better on three cognitive tests than participants of normal weight, leading researchers to speculate about the role of sex hormones and cognition.

Estrogen and Stroke Risk

Released November 3, 2009 - Stroke, also known as a brain attack, is America’s third leading cause of death. It typically occurs when blood flow to the brain is blocked, usually due to a clogged artery. When a stroke occurs, brain damage can result, especially in the area known as the hippocampus, thought to be the site for memory, memory loss, and learning. Despite the possible link between estrogen and stroke many women continue to take the hormone to manage their menopausal symptoms. A new study provides support for the theory that there may be a “critical period” for beneficial protective effect of estrogen on the brain – e.g. that of estrogen replacement may need to be initiated prior to or at the time of menopause if estrogen is to protect the brain. Additional studies will need to confirm the findings.

Exercise, Rest, Repeat: How a Break Can Help Your Workout

Released July 17, 2007 - Taking a break in the middle of your workout may metabolize more fat than exercising without a break. Japanese researchers have conducted the first known study to compare the two exercise methods—exercising continually in one long bout versus breaking up the same workout with a rest period.

Female Gender Provides An Advantage In Renal Diseases

Released August 8, 2007 - Sex hormones (estrogen, testosterone) are thought to contribute to health differences, as hormones may influence the body’s responses to renal injury. Estrogen especially may exert certain cellular effects on the kidney because it can suppress the growth of scar tissue as well as affect various growth factors which impact the kidney.

From: 
Email:  
To: 
Email:  
Subject: 
Message:

~/Custom.Templates/PressRelease.aspx