Abnormal Activation of a Protein May Explain Link Between High Salt Intake & Obesity

FOR IMMEDIATE RELEASE
September 19, 2011

Contact: Donna Krupa
Office: (301) 634-7209
dkrupa@the-aps.org
@Phyziochick

Abnormal Activation of a Protein May Explain Deadly Link Between High Salt Intake and Obesity

Findings to be discussed at conference sponsored by the American Physiological Society

BETHESDA, Md.(Sept.19, 2011) – Dietary salt intake and obesity are two important risk factors in the development of high blood pressure. Each packs its own punch, but when combined, they deliver more damage to the heart and kidneys than the sum of their individual contributions. Discovering the molecular mechanisms behind this lethal synergy has presented a challenge to scientists, but research led by Toshiro Fujita, MD, professor and chairman of the Department of Internal Medicine and chief of the Department of Nephrology and Endocrinology at the University of Tokyo, suggests that high dietary salt intake and obesity work together to trigger an abnormal activation of a cellular protein called Rac1.

How Obesity and a High-Salt Diet Team Up

Dr. Fujita’s team studied the effects of a high-salt diet in rats bred to have high blood pressure and different levels of blood pressure sensitivity to salt. When obese “salt-sensitive” rats were fed a high-salt diet, the team found that Rac1 activated the mineralocorticoid receptor (MR) on the rats’ kidney cells. This receptor is normally activated by the hormone aldosterone. When turned on, MR leads to the expression of a protein called epithelial sodium channel (ENaC) and an enzyme called the sodium pump. Both of these substances promote the reabsorption of salt, which causes the body to retain fluid and results in high blood pressure. This is the first time scientists have seen Rac1 usurp aldosterone’s role in activating MR in the regulation of blood pressure. The protein’s usual duties entail regulating an array of cellular events such as cell growth.

The team made the discovery when attempting to treat the obese, hypertensive rats with drugs designed to block MR activation and inhibit Rac1. When Rac1 inhibitors were successful in lowering the rats’ blood pressure, the team knew they had discovered a mechanism by which obesity and a high-salt diet team up to wreak havoc on blood pressure and the kidneys.

Importance of the Findings

According to Dr. Fujita, the team’s findings carry important implications for the treatment of hypertension. “Our data indicate that the Rac1-mediated pathway in the kidneys can be an alternative therapeutic target for salt-sensitive hypertension and salt-mediated kidney injury,” he said. “Based upon our results, we can speculate that Rac1in the kidneys regulates salt susceptibility of blood pressure, and that Rac1 inhibitors, as well as MR antagonists, may be effective in the treatment of salt-sensitive hypertension.”

Presentation

Dr. Fujita will discuss the team’s research in his presentation titled, “Aberant Rac1-MR Pathway in Salt-Sensitive Hypertension and Metabolic Syndrome” at the upcoming

7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels, being held September 18-22 in Pacific Grove, Calif. The conference is sponsored by the American Physiological Society.Additional information about the meeting is posted online at http://www.the-aps.org/press/releases/11/24.htm.

###

NOTE TO EDITORS: For an abstract of Dr. Fujita’s presentation, “Aberrant Rac1-MR Pathway in Salt-Sensitive Hypertension and Metabolic Syndrome,” or to request an interview, please contact Donna Krupa at 301.634.7209 or dkrupa@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society has been an integral part of the discovery process since it was established in 1887. To keep up with the science, follow @Phyziochick on Twitter.


Related Items

Translating the Conversation Between the Brain and Blood Vessels

Released April 21, 2009 - Does hypertension occur because the brain loses its ability to sense that the blood vessels are stretching under high pressure? In a study with obese rats, researchers found the animals’ brains could sense the stretch but still became hypertensive, eliminating that mechanism as a possibility.

Predicting Risk for High Blood Pressure

Released April 26, 2010 -- There are racial differences in the activity of enzymes that make or break down a major regulator of blood pressure. New research results correlate with the bias of African Americans being more at risk for hypertension. The findings were that African American boys have more of the enzyme that makes the hormone that contributes to high blood pressure and African American girls have less of the enzyme that makes the hormone that protects against high blood pressure or hypertension.

Maternal Stress During Pregnancy May Affect Child's Obesity

Released April 12, 2011 - An animal study conducted at the University of Minnesota and Georgetown University suggests that a mother's nutritional or psychological stress during pregnancy and lactation may create a signature on her child's genes that put the child at increased risk for obesity later in life, especially if the child is female.

Obesity May Shut Down Circadian Clock in Cardiovascular System

Released April 10, 2011 - Obese individuals typically suffer more medical problems than their leaner counterparts such as insulin resistance, diabetes, increased stress hormones, hypothyroidism, and sleep apnea. Researchers at the Georgia Health Sciences University have found, using an animal model, that a master clock gene – which regulates the cardiovascular system – does not fluctuate regularly as it does in non-obese animals. This means that a key gene clock of the cardiovascular system does not work properly when obesity is present.

Weight Loss from Gastric Bypass Partly Due to Dietary Fat Aversion

Released July 27, 2011 - A study in people and rats, published by the APS, suggests that gastric bypass doesn’t just cut calories – it may also cause patients to have an aversion to dietary fat.

From: 
Email:  
To: 
Email:  
Subject: 
Message:

~/Custom.Templates/Document2Columns.aspx