The American Physiological Society Press Release

press release logo

APS Contact: APS Communications Office

Email: communications@the-aps.org

Phone: 301.634.7209

Twitter: @APSPhysiology


Increased Electrical Activity in Eye May Relieve Short-term Dry Eye Pain

Study finds natural voltage boost helps maintain tear film fluid balance

Rockville, Md. (June 6, 2018)—A boost of electrical activity in the eye’s mucous membranes may lead to new treatments for the painful condition known as dry eye. The study, published ahead of print in the American Journal of Physiology—Cell Physiology, was chosen as an APSselect article for June.

Dry eye is a common condition that is often caused by a disruption in the eye’s fluid balance. A long-term imbalance of too much salt and not enough water (hyperosmolarity) in the thick layer of fluid in the eye (tear film) can lead to inflammation and cell damage that may become irreversible.

Extremely fast electrical signals carry messages throughout the body, telling it how to function. This process plays a role in how the body responds to various stimuli. In this case, little is known about how the eye’s surface adapts to the fluid imbalance seen in dry eye. Donald G. Puro, MD, PhD, from the University of Michigan, studied the bioelectrical responses of cells in the mucous membranes that line the eyelids (goblet cells). Goblet cells release a protein called mucin—the basis of mucous—which slows down the evaporation of tears and helps maintain the tear film’s balance. In a rat model of dry eye, Puro found that electrical activity in the goblet cells increases as hyperosmolarity rises in the tear film, which in turn allows the cells to produce more mucin. However, this voltage boost is short-lived. If the salt-to-water ratio of the tear film remains unbalanced in the long-term, the goblet cells’ electrical activity returns to normal levels without producing additional mucin.

“Continued progress in elucidating the bioelectric mechanisms by which the ocular surface responds to dryness [and] hyperosmolarity should provide novel strategies for ameliorating [improving] the uncomfortable sight-impairing condition of dry eye,” Puro wrote.

Read the full article, “Role of ion channels in the functional response of conjunctival goblet cells to dry eye,” published ahead of print in the American Journal of Physiology—Cell Physiology. It is highlighted as one of this month’s “best of the best” as part of the American Physiological Society’s APSselect program. Read all of this month’s selected research articles.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the APS Communications Office or 301-634-7209. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,500 members and publishes 15 peer-reviewed journals with a worldwide readership.

 


RelatedItems

Heavier Astronauts Have Higher Risk of Post-flight Eye Changes

Released May 31, 2018 - New research suggests that changes in the eye that occur during spaceflight may be related to how much an astronaut weighs. The study is published ahead of print in the American Journal of Physiology—Regulatory, Integrative and Comparative Physiology.

New Insight May Lead to Better Detection, Treatment of Common Autoimmune Disease

Released May 3, 2016 - Sjögren's syndrome affects an estimated four million people in the U.S., but diagnosis is often delayed because its symptoms are similar to other conditions. A new study in the American Journal of Physiology—Cell Physiology describes a protein with the potential to be an earlier and more precise indicator of the disease.

From: 
Email:  
To: 
Email:  
Subject: 
Message:

~/Custom.Templates/PressRelease.aspx