The American Physiological Society Press Release

press release logo

APS Contact: APS Communications Office

Email: communications@the-aps.org

Phone: 301.634.7209

Twitter: @APSPhysiology


Nerve-Signaling Protein Regulates Gene Associated with Schizophrenia

Mice lacking protein show signs of mental illness

Bethesda, Md. (January 5, 2017)—Researchers from the University of California, San Diego, have identified a protein that regulates a gene associated with schizophrenia. The study, published in the Journal of Neurophysiology, was chosen as an APSselect article for January.

Schizophrenia—a chronic mental illness that affects a person’s thoughts, feelings and behavior—is determined in part by genetic makeup. The DISC1 gene is associated with developing schizophrenia. DISC1 is involved in the growth of nerve cells, proper nerve signaling and the ability of the brain to grow and adjust (neuroplasticity) throughout a person’s lifetime. Loss of DISC1 function can interrupt the normal signaling pattern, which may lead to schizophrenia-like symptoms, such as movement disorders, memory problems and reduced expression of emotions.

Caveolin (Cav-1) is a cell membrane protein that promotes nerve signaling and neuroplasticity in the nervous system. In this study, the research team looked at the interaction between Cav-1 and DISC1 in the nerve cells of mice. The team is the first to find that Cav-1 regulates the function of DISC1.

Mice that did not express the Cav-1 protein had less DISC1 expression in the brain and showed symptoms on the molecular level similar to that seen in brains afflicted with schizophrenia. When the researchers reintroduced Cav-1 specifically in nerve cells of these mice, DISC1 protein, in addition to proteins critical for synaptic plasticity (the ability of neurons to grow and form new connections), returned to normal levels.

The study’s findings have significant implications for schizophrenia treatment. “While pharmacological treatments such as antipsychotics are available for schizophrenia, these classes of drugs show poor efficacy for most patients, especially in reversing cognitive abnormalities,” wrote the researchers. “Further understanding of how Cav-1 modulates DISC1 to maintain and organize neuronal growth signaling and proper function is of upmost importance to better understand and identify potential molecular targets for treating schizophrenia.”

The article, “Caveolin-1 Regulation of Disrupted-in-Schizophrenia-1 as a Potential Therapeutic Target for Schizophrenia,” is published in the Journal of Neurophysiology. It is highlighted as one of this month’s “best of the best” as part of the American Physiological Society’s APSselect program. Read all of this month’s selected research articles on the APSselect website.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the APS Communications Office or 301-634-7209. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,500 members and publishes 14 peer-reviewed journals with a worldwide readership.

 


RelatedItems

Muscles and Bones in Cahoots

Released April 27, 2010 -- Recent evidence supports the notion that bones and muscles are more interconnected than previously thought. Bones and muscles can release signals that directly affect one another’s function or disease state. Even more remarkable is that these systems seem to produce secreting factors that communicate to distant parts of the body. A collaborative group observed that mutations or defects in specific genes important for muscle function, also created changes in bones. The findings could have implications for the treatment of osteoporosis and other disorders associated with aging.

Physiology Researcher Using Batman to put POW! into Physiology

Released March 4, 2011 - Physiologist E. Paul Zehr writes about how he uses the Batman character to discuss the various components of exercise and physical training and illustrate how the body’s physiological systems respond.

“Why Physiology Matters in Medicine”

Released May 16, 2011 - Michael J. Joyner, M.D., Professor of Anesthesiology at the Mayo Clinic, makes a strong case for why teaching the essential science of physiology to tomorrow’s physicians is critical.

Harvard Fatigue Laboratory Brought Aid & Comfort to America’s WWII GIs

Released September 13, 2010 - During World War II, researchers at the Harvard Fatigue Laboratory tested materials, food, and clothing that were ultimately used in preserving the lives and limbs of the nation’s 16 million soldiers, also known as GIs. The lab examined everything from the best forms of insulation for cold-weather combat to the metabolic effects of a diet consisting solely of “pemmican,” a foodstuff consisting of 50% protein and 50% fat.

What's Behind Hypertension?

Released August 1, 2011 - Each day we consume liquids in order to keep hydrated and maintain our body’s fluid balance. But just as a water balloon can get overtaxed by too much liquid, the human body is negatively affected when it retains fluids because it is unable to eliminate them properly. One of the key variables influencing how much fluid we hold in our bodies is ordinary table salt. The consequences of excess fluid retention can be severe, causing not only edema (excess of body fluid), but also high blood pressure (hypertension). What is the connection between fluid balance and hypertension? The 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels explores the topic in detail.

From: 
Email:  
To: 
Email:  
Subject: 
Message:

~/Custom.Templates/PressRelease.aspx