The American Physiological Society Press Release

press release logo

APS Contact: APS Communications Office


Phone: 301.634.7209

Twitter: @APSPhysiology

Ability to Process Speech Declines with Age

Study finds midbrain and cortex show deficits

Bethesda, Md. (October 4, 2016)—Researchers have found clues to the causes of age-related hearing loss. The ability to track and understand speech in both quiet and noisy environments deteriorates due in part to speech processing declines in both the midbrain and cortex in older adults. The paper, published in the Journal of Neurophysiology, was chosen as an APSselect article for October.

Thirty-two native English-speaking volunteers with clinically normal hearing were assigned to two groups: younger adults (average age, 22) and older adults (average age, 65). The research team measured the volunteers’ speech comprehension using the Quick Speech-in-Noise (QuickSIN) test. The researchers also gave the volunteers an electroencephalogram, which measured mid-brain activity, and a magnetocephalogram to measure cortical activity. For both groups, the researchers calculated the listeners’ ability to comprehend speech in quiet settings and environments with more than one person talking. Background noise was delivered in four distinct signal-to-noise ratios (SNR), which measures signal strength (i.e., the primary talker) relative to background noise (i.e., the competing reader).

The researchers found that the older group had more trouble tracking speech than the younger group in both quiet and noisy environments across all SNRs. The older adults took more time to process several acoustic cues, such as accuracy of speech, and also scored lower on the QuickSIN test for speech comprehension in noise. Deficits from aging were also seen neurally, both in midbrain and cortex, according to the researchers. These results suggest that age-related problems with understanding speech are not only due to the inability to hear at certain volumes but also occur because the aging brain is not able to correctly interpret the meaning of sound signals.

The article, “Evidence of degraded representation of speech in noise, in the aging midbrain and cortex,” is published in the Journal of Neurophysiology. It is highlighted as one of this month’s “best of the best” as part of the American Physiological Society’s APSselect program. Read all of this month’s selected research articles on the APSselect website.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the APS Communications Office or 301-634-7209. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,500 members and publishes 15 peer-reviewed journals with a worldwide readership.



Research Model May One Day "Inoculate" Elderly Against Slip-Related Falls

Released February 4, 2009 - Training people to avoid falls by repeatedly exposing them to unstable situations in the laboratory helped them to later maintain their balance on a slippery floor, according to new research from the Journal of Neurophysiology.

Is There a Central Brain Area for Hearing Melodies and Speech Cues?

Released November 28, 2011 - The perceptual feature of sound known as pitch is fundamental to human hearing, allowing us to enjoy the melodies and harmonies of music and recognize the inflection of speech. Previous studies have suggested that a particular hotspot in the brain might be responsible for perceiving pitch. However, auditory neuroscientists are still hotly debating whether this “pitch center” actually exists. A new review article discusses a recent study claiming that this pitch center may not exist after all, or alternatively, may not be located where previous research has suggested.

Working Memory and the Brain

Released February 6, 2012 - Work published in the Journal of Neurophysiology may explain why people can hold visual information in high detail in their working memory. Using functional neuroimaging, investigators found that visual working memory follows a more general pattern of brain activity than visual perception and relies on concerted action of specialized areas in the rear of the brain and control areas in the front of the brain, which were activated regardless of what the participants viewed.