Testimony submitted by the American Physiological Society to the Senate Appropriations Subcommittee on Commerce, Justice and Science, and Related Agencies on the topic of funding for the National Science Foundation and NASA.

The American Physiological Society (APS) thanks you for your sustained support of science at the NSF and NASA. The APS is a professional society, numbering more than 10,000 members, dedicated to fostering research and education as well as the dissemination of scientific knowledge concerning how the organs and systems of the body function. In this letter we offer our recommendations for FY 2016 funding levels for these two agencies.

- The APS urges you to fund the FY 2016 NSF budget at a net level of $7.72 billion to prevent further erosion of program capacity.
- The APS urges you to restore cuts to NASA’s life sciences research budgets and to increase funding for the Human Research Program.

NSF and NASA support scientific research and technology development programs that are critical to the future technological excellence and economic stability of the United States. Federal investment in research is critically important because breakthroughs in basic and translational research are the foundation for new technologies that help patients, fuel our economy, and provide jobs.

NSF funds outstanding research and education programs

NSF provides support for approximately 20% of all federally funded basic science and is the major source of support for non-medical biology research, including integrative, comparative, and evolutionary biology, as well as interdisciplinary biological research. It has been shown time and time again that the knowledge gained through basic biological research is the foundation for more applied studies that sustain the health of animals, humans and ecosystems. NSF funded research has led to countless new discoveries that were not originally envisioned, but led to unforeseen applications throughout the scientific, health and economic worlds.

The majority of the NSF funding is awarded through competitive, merit-based peer review, ensuring that the best possible projects are supported. Reviewers and NSF officials consider both the intellectual merit of each research proposal, and also the broader impacts. The broader impact criteria are defined as the potential for research to benefit society and achieve specific outcomes. NSF has an exemplary record of accomplishment in terms of funding research that produces results with far-reaching potential. Since its inception in 1950, NSF has supported the work of 214 Nobel Laureates, including the 2014 winners of the Chemistry and Economics prizes.
Biological research is just one part of the NSF portfolio. The APS believes that each of the NSF directorates support research that is critical to NSF’s mission “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…” Collaboration among scientific disciplines is increasingly recognized as the best and most efficient way to advance science. This will only be possible with strong support for all disciplines of research.

In addition to funding innovative research in labs around the country, the NSF education programs foster the next generation of scientists. The APS is proud to have partnered with NSF in programs to provide training opportunities and career development activities to enhance the participation of underrepresented minorities in science. We believe that NSF is uniquely suited to foster science education programs of the highest quality, and we recommend that Congress continue to provide federal funds for science education through the NSF.

The APS joins the Federation of American Societies for Experimental Biology (FASEB) to recommend that the NSF be funded at a level of $7.72 billion in FY 2016 so that it can support a sustainable research program that follows a funding trajectory reflecting the level authorized in the America COMPETES Act.

Support for Life Sciences Research should be increased at NASA

NASA sponsors research across a broad range of the basic and applied life sciences, including gravitational biology, biomedical research and the Human Research Program (HRP). The gravitational biology and biomedical research programs explore fundamental scientific questions through research carried out both on Earth and aboard the International Space Station, which provides an environment for the conduct of experiments in space. The HRP at NASA conducts unique research and develops countermeasures with the goal of enabling safe and productive human space exploration.

During prolonged space flight, the physiological changes that occur due to microgravity, increased exposure to radiation, confined living quarters, and alterations in eating and sleeping patterns can lead to debilitating conditions and reduced ability to perform tasks. APS scientists are actively engaged in research that explores the physiological basis of these problems with the goal of contributing to the identification of therapeutic targets and development of countermeasures. The knowledge gained from this research is not only relevant to humans traveling in space, but is also directly applicable to human health on Earth. For example, some of the muscle and bone changes observed in astronauts after prolonged space flight are similar to those seen in patients confined to bed rest during periods of critical illness as well as during the process of aging.

NASA is the only agency whose mission addresses the biomedical challenges of human space exploration. Over the past several years, the amount of money available for conducting this kind of research at NASA has dwindled. The overall number of projects and investigators supported by NASA through the HRP, National Space Biomedical Research Institute and Exploration and
Technology Development program has decreased markedly (https://taskbook.nasaprs.com/Publication/). In the past, appropriations legislation specified funding levels for biomedical research and gravitational biology, but recent internal reorganizations at NASA have made it difficult to understand how much money is being spent on these programs from year to year. The APS recommends that funding streams for these important fundamental research programs be clearly identified and tracked within the NASA budget. The APS also recommends restoration of cuts to peer-reviewed life sciences research.

As highlighted above, investment in the basic sciences is critical to our nation’s technological and economic future. The APS urges you to make every effort to provide these agencies with increased funding for FY 2016.