Citation Statistics for the Individual Journals of

The American Journal of Physiology

Brenda B. Rauner

The Institute for Scientific Information (ISI) publishes Impact Factors for 60 journals in its Physiology category. Table 1 provides a ranking of the top 16 physiology journals in 1996. This Impact Factor is based on the citations to a journal of items published in 1995 and 1996, divided by the total number of items published by a journal in those two years. The top-ranking physiology journal was the Society’s *Physiological Reviews (PRV)*, with an Impact Factor of 19.38. The *American Journal of Physiology* was ranked 8th among 60 physiology journals with an Impact Factor of 3.32. For other Society journals, the *Journal of Neurophysiology (JN)* ranked 7th, *News in Physiological Sciences (NIPS)* ranked 15th, and the *Journal of Applied Physiology (JAP)* ranked 16th. The citation half-life is the number of journal publication years going back from the current year (1996) that account for 50% of the total citations received by the cited journal in the current year. Note that the *JAP* ranks 6th in this category, *PRV* ranks 8th, and *JN* ranks 10th.

Unfortunately, it has not been possible to assess the scientific impact of the individual *AJP* journals using the Impact Factor analysis because ISI does not track citation information for the individual *AJP* journals. In general, authors cite articles from these journals by using the volume and page numbers of the consolidated *American Journal of Physiology*, hence over the years ISI has only provided the Impact Factors for the consolidated *AJP*. In 1994 the Publications Committee commissioned ISI to provide us with this information because of our need to know the citation history of the individual journals. The results were published in the June 1995 issue of *The Physiologist*. The Society asked ISI to update the study in 1998, and the results are published here for your information. Even though Impact Factors per se were not obtained because of the study design, the analysis did provide the Society with useful citation statistics. As in 1994, the study determined the number of times an individual *AJP* journal bibliographic published item was cited in the ISI database of approximately 4,500 biomedical journals, but this time the period was for 10 years (1987 to 1996) instead of 7 years.

The new study also compared the individual *AJP* journals with each other (Table 2). For the *American Journals of Physiology*, *AJP: Renal Physiology* has the largest mean citation score of 20.55 over the ten-year cumulative period. *AJP: Cell Physiology* ranks second with a mean citation score of 20.14.

As part of the study, ISI was asked to do a similar citation analysis on “competing” journals identified by our editors. Table 3 compares statistics for the individual *AJP* journals and the “competing” journals.
Contents

Citation Statistics 109
Brenda B. Rauner

Long-term Vs. Short-Term Journal Impact: Does it Matter? 113
Eugene Garfield

Journal Impact Factors 114, 115

APS News 116
Guyton Teaching Award
Michael G. Levitzky

Membership
Membership Statistics 122
Election of New Members 123
Approved Student Members 125

Chapter News
Iowa APS Chapter Annual Report 128

Conferences
1998 APS Conference: Endothelial Regulation of Vascular Tone 130
1998 APS Conference: Paraventricular Nucleus of the Hypothalamus 131

FASEB News 133
FASEB Accepts 3 New Societies

Public Affairs
Congress Debates Budget, Tobacco 134

HSUS to Ask for New USDA Pain Reports 135

APS, FASEB, Seek More Fair Animal Cost Rules 135

Web News 136

Education
New Outreach Teams Named 137
Summer Volunteers Needed 137

Positions Available 138

People and Places
Deceased Members 140

APS Members Elected to AAAS 141
APS Member Elected to NAS 141
Orkand Received Fulbright 141

Books Received 141

News From Senior Physiologists 142

Book Reviews 145

Scientific Meetings and Congresses 149

Published bimonthly and distributed by
The American Physiological Society
9650 Rockville Pike
Bethesda, Maryland 20814-3991
ISSN 0031-9376

L. Gabriel Navar
President
Allen W. Cowley, Jr.
Past President
Walter F. Boron
President-Elect
Martin Frank
Editor and Executive Director

Councillors
Dale J. Benos, Ethan R. Nadel, Celia D. Sladek, Richard J. Traystman, John A. Williams, Phyllis M. Wise

Ex Officio

Subscriptions: Distributed to members as part of their membership. Nonmembers in the USA: individuals $38.00; institutions $56.00. Nonmembers elsewhere: individuals $48.00; institutions $67.00. Single copies and back issues when available, $10.00 each; single copies and back issues of Abstracts issues when available, $20.00. Subscribers to The Physiologist also receive abstracts of the Conferences of the American Physiological Society.

The American Physiological Society assumes no responsibility for the statements and opinions advanced by contributors to The Physiologist.

Deadline for submission of material for publication: January 1, February issue; March 1, April issue; May 1, June issue; July 1, August issue; Sept. 1, October issue; Nov. 1, December issue.

Please notify the central office as soon as possible if you change your address or telephone number.

Headquarters phone: 301-530-7118.
Fax: 301-571-8305.
http://www.faseb.org/aps/

Printed in the USA
Citation Statistics for AJP

(continued from page 109)

Table 1. ISI©SCI©JCR©1996 Impact Factor Ranking of First 16 Journals in a List of 60 Physiology Journals

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Impact Factor</th>
<th>Cited Half-Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological Reviews*</td>
<td>19.38</td>
<td>8.1</td>
</tr>
<tr>
<td>Annual Review of Physiology</td>
<td>14.55</td>
<td>6.3</td>
</tr>
<tr>
<td>Reviews of Physiology Biochemistry and Pharmacology</td>
<td>9.90</td>
<td>9.6</td>
</tr>
<tr>
<td>Journal of General Physiology</td>
<td>4.98</td>
<td>9.3</td>
</tr>
<tr>
<td>Advances in Microbial Physiology</td>
<td>4.75</td>
<td>10.0</td>
</tr>
<tr>
<td>Journal of Neurophysiology*</td>
<td>3.83</td>
<td>7.2</td>
</tr>
<tr>
<td>American Journal of Physiology*</td>
<td>3.32</td>
<td>6.0</td>
</tr>
<tr>
<td>Pfluegers Archiv-European Journal of Physiology</td>
<td>2.96</td>
<td>8.5</td>
</tr>
<tr>
<td>Journal of Cellular Physiology</td>
<td>2.84</td>
<td>6.7</td>
</tr>
<tr>
<td>Psychophysiology</td>
<td>2.82</td>
<td>9.3</td>
</tr>
<tr>
<td>Journal of Membrane Biology</td>
<td>2.73</td>
<td>7.4</td>
</tr>
<tr>
<td>Chemical Senses</td>
<td>2.67</td>
<td>6.1</td>
</tr>
<tr>
<td>Journal of Vascular Research</td>
<td>2.48</td>
<td>3.1</td>
</tr>
<tr>
<td>News in Physiological Sciences*</td>
<td>2.21</td>
<td>4.4</td>
</tr>
<tr>
<td>Journal of Applied Physiology*</td>
<td>2.05</td>
<td>9.1</td>
</tr>
</tbody>
</table>

* A journal of The American Physiological Society

Table 2. Cumulative Citation Statistics for Individual AJP Journals 1987 - 1996

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Items Published</th>
<th>Citations</th>
<th>Items Cited</th>
<th>Mean, Cited Items</th>
<th>Uncited Items</th>
<th>Mean, All Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJP: Cell Physiology</td>
<td>3,258</td>
<td>47,969</td>
<td>2,382</td>
<td>20.14</td>
<td>876</td>
<td>14.72</td>
</tr>
<tr>
<td>AJP: Endocrinology and Metabolism</td>
<td>2,664</td>
<td>32,941</td>
<td>1,982</td>
<td>16.62</td>
<td>682</td>
<td>12.37</td>
</tr>
<tr>
<td>AJP: Gastrointestinal and Liver Physiology</td>
<td>2,730</td>
<td>34,833</td>
<td>2,132</td>
<td>16.34</td>
<td>598</td>
<td>12.76</td>
</tr>
<tr>
<td>AJP: Lung Cellular and Molecular Physiology*</td>
<td>1,329</td>
<td>11,885</td>
<td>819</td>
<td>14.51</td>
<td>510</td>
<td>8.94</td>
</tr>
<tr>
<td>AJP: Heart and Circulatory Physiology</td>
<td>5,187</td>
<td>69,449</td>
<td>3,839</td>
<td>18.09</td>
<td>1,348</td>
<td>13.39</td>
</tr>
<tr>
<td>AJP: Regulatory, Integrative, and Comparative Physiology</td>
<td>3,845</td>
<td>36,079</td>
<td>2,905</td>
<td>12.42</td>
<td>940</td>
<td>9.38</td>
</tr>
</tbody>
</table>

*Founded August 1988. Items Published, bibliographic items published from 1987-1996; Citations, total citations received by items; Items Cited, number of articles cited at least once; Mean, Cited Items, average number of cites per item based on citations to cited items only; Uncited, number of items never cited; Mean, All Items, average number of cites per item based on citations to all items.
Table 3. Statistics for the Individual *AJP* Journals and Journals That Compete With *AJP*

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Items Published</th>
<th>Citations</th>
<th>Items Cited</th>
<th>Mean Cited Items</th>
<th>Uncited Items</th>
<th>Mean, All Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJP: Lung Cellular and Molecular Physiology</td>
<td>1,329</td>
<td>11,885</td>
<td>819</td>
<td>14.51</td>
<td>510</td>
<td>8.94</td>
</tr>
<tr>
<td>American Journal of Respiratory Cell Mol. Biol.</td>
<td>1,270</td>
<td>15,059</td>
<td>1,087</td>
<td>13.85</td>
<td>183</td>
<td>11.86</td>
</tr>
<tr>
<td>Experimental Lung Research</td>
<td>554</td>
<td>3,911</td>
<td>446</td>
<td>8.77</td>
<td>108</td>
<td>7.06</td>
</tr>
<tr>
<td>AJP: Heart and Circulatory Physiology</td>
<td>5,187</td>
<td>69,449</td>
<td>3,839</td>
<td>18.09</td>
<td>1,348</td>
<td>13.39</td>
</tr>
<tr>
<td>Circulation Research</td>
<td>2,875</td>
<td>78,895</td>
<td>2,644</td>
<td>29.84</td>
<td>231</td>
<td>27.44</td>
</tr>
<tr>
<td>Cardiovascular Research</td>
<td>2,180</td>
<td>15,538</td>
<td>1,637</td>
<td>9.49</td>
<td>543</td>
<td>7.13</td>
</tr>
<tr>
<td>AJP: Renal Physiology</td>
<td>2,840</td>
<td>46,052</td>
<td>2,241</td>
<td>20.55</td>
<td>599</td>
<td>16.22</td>
</tr>
<tr>
<td>Journal of the American Society of Nephrology</td>
<td>11,203</td>
<td>10,071</td>
<td>2,086</td>
<td>4.83</td>
<td>9,117</td>
<td>0.90</td>
</tr>
<tr>
<td>American Journal of Kidney Disorders</td>
<td>2,663</td>
<td>17,529</td>
<td>1,888</td>
<td>9.28</td>
<td>775</td>
<td>6.58</td>
</tr>
<tr>
<td>Kidney International</td>
<td>16,811</td>
<td>70,444</td>
<td>6,102</td>
<td>11.54</td>
<td>10,709</td>
<td>4.19</td>
</tr>
<tr>
<td>AJP: Regulatory, Integrative Comp. Physiol.</td>
<td>3,845</td>
<td>36,079</td>
<td>2,905</td>
<td>12.42</td>
<td>940</td>
<td>9.38</td>
</tr>
<tr>
<td>Journal of Experimental Biology</td>
<td>2,437</td>
<td>18,640</td>
<td>2,042</td>
<td>9.13</td>
<td>395</td>
<td>7.65</td>
</tr>
<tr>
<td>Journal of Physiology-London</td>
<td>15,186</td>
<td>108,763</td>
<td>8,221</td>
<td>13.23</td>
<td>6,965</td>
<td>7.16</td>
</tr>
<tr>
<td>AJP: Cell Physiology</td>
<td>3,258</td>
<td>47,969</td>
<td>2,382</td>
<td>20.14</td>
<td>876</td>
<td>14.72</td>
</tr>
<tr>
<td>Cell</td>
<td>4,811</td>
<td>613,915</td>
<td>4,570</td>
<td>134.34</td>
<td>241</td>
<td>127.61</td>
</tr>
<tr>
<td>Journal of Biological Chemistry</td>
<td>38,793</td>
<td>1,015,605</td>
<td>35,010</td>
<td>29.01</td>
<td>3,783</td>
<td>26.18</td>
</tr>
<tr>
<td>Molecular Biology of the Cell</td>
<td>5,385</td>
<td>10,982</td>
<td>913</td>
<td>12.03</td>
<td>4,472</td>
<td>2.04</td>
</tr>
<tr>
<td>Journal of Clinical Investigation</td>
<td>6,374</td>
<td>223,280</td>
<td>5,809</td>
<td>38.44</td>
<td>565</td>
<td>35.03</td>
</tr>
<tr>
<td>AJP: Endocrinology and Metabolism</td>
<td>2,664</td>
<td>32,941</td>
<td>1,982</td>
<td>16.62</td>
<td>682</td>
<td>12.37</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>8,185</td>
<td>156,099</td>
<td>7,395</td>
<td>21.11</td>
<td>790</td>
<td>19.07</td>
</tr>
<tr>
<td>Diabetes</td>
<td>6,942</td>
<td>57,919</td>
<td>3,003</td>
<td>19.29</td>
<td>3,939</td>
<td>8.34</td>
</tr>
<tr>
<td>AJP: Gastrointestinal and Liver Physiology</td>
<td>2,730</td>
<td>34,833</td>
<td>2,132</td>
<td>16.34</td>
<td>598</td>
<td>12.76</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>29,912</td>
<td>106,455</td>
<td>10,876</td>
<td>9.79</td>
<td>19,036</td>
<td>3.56</td>
</tr>
<tr>
<td>Hepatology</td>
<td>16,306</td>
<td>61,772</td>
<td>5,509</td>
<td>11.21</td>
<td>10,797</td>
<td>3.79</td>
</tr>
</tbody>
</table>

See legend to Table 2 for definitions of column headings.
The first published report on journal impact factors was included in E. Garfield, I.H. Sher, “New factors in the evaluation of scientific literature through citation indexing,” American Documentation, 14(3):195-201, July 1963. The late Irving H. Sher, who then was director of R&D at the Philadelphia-based Institute for Scientific Information (ISI), and I created the impact factor to help evaluate and select journals for Current Contents. The current impact factor is determined by counting citations in the current year’s publications to papers published in the previous two years and dividing by the number of papers published in the same period. Editors often have complained that this measure, which records average influence in the first and second years after publication, is biased against journals in slow-moving fields. They have argued that measurement of long-term impact would show such journals in a better light.

The original reason for creating the impact factor was to make sure that Current Contents covered the most significant journals. Thus, a current impact calculation, based on the two preceding years of publications, served us well enough. Later, ISI started to produce its Journal Citation Reports (JCR) as a byproduct of the Science Citation Index. Publishing long-term journal impact data was not considered a high-priority, but the data were there for those persistent enough to combine the input from consecutive annual JCR volumes.

Recently, ISI’s Journal Performance Indicators database became available. [For information, contact David Pendlebury at ISI; (215) 386-0100, Ext. 1411.] The 1995 edition, which contains publication and citation data on ISI-indexed journals for each year from 1981 to 1995, helped us examine short- and long-term changes in journal citation rates. We used papers published in 1981-1982 and in 1989-1990 as the source groups of cited articles, and used the database to compile 15-year and seven-year cumulative impact data, from 1981-1995 and 1989-1995, respectively. The study was limited to journals that published more than 200 articles in 1981-1982 and eliminated all review journals regardless of size.

The table that follows includes the 100 journals with the highest cumulative impact based on 15 years of data. The first group of columns shows the number of articles published in 1981-1982, the total cumulated citations over 15 years, the impact measured as citations per article, and the impact rank. This is followed by the ranking for each journal when then-current impact factors were published in 1983. The second group of columns shows the same data for the 1989-1990 articles, with the rank based on seven-year citation data and the then-current impact factor measured in 1991.

Prominent Rankings Retained

With few exceptions, the top journals in terms of citations and productivity retain prominent rankings. The top 10—Cell, New England Journal of Medicine, Journal of Experimental Medicine, Journal of Cell Biology, Proceedings of the National Academy of Sciences, Archives of General Psychiatry, Journal of Clinical Investigation, Nature, Journal of Molecular Biology, and Science—are the highest impact when measured over two-, seven-, or 15-year periods.

On the other hand, significant downward changes in the rankings occur for such journals as Endocrinology, Kidney International, Journal of Virology, and almost all letters journals. These changes can be attributed to a variety of factors. For letters journals, one can assume that the authors went on to publish other work that superseded their earlier short reports. On the other hand, some journals may have improved long-term ranks owing to cumulative effects of a few highly cited “Citation Classics.” More than one third of the citations to articles published in 1981-82 in Journal of Histochemistry and

Cytochemistry were to a single article by S.M. Hsu et al. (29:527-80, 1981).

My report entitled “The Significant Scientific Literature Appears In A Small Core Of Journals” (The Scientist, Sept. 2, 1996, page 13) listed the 50 journals that were most cited in absolute terms in 1994 and the 50 that published the largest number of articles. Many of these journals do not appear in the new lists ranked by long-term cumulative impact. These titles include the Journal of Geophysical Research, Physical Review B, Journal of Chemical Physics, Brain Research, and Biochimica et Biophysica Acta. Few would dispute the significance of these large journals in their respective fields, but further study is required to fully understand these data.

Current vs. Long-Term Impact Rankings

The new data reported here show dramatic changes in impact rankings. How would these data affect journal selection based on current impact? Since meaningful comparisons can be made only within subject categories, the key question is whether these data affect ranking within a field such as physiology. Cross-disciplinary comparisons may not take into account the innate character of physiological research, in which advances may not be absorbed as rapidly as in other fields. Will journal rankings within categories differ significantly using a long-term impact? Or are current data good predictors of future rankings within the field?

It is impossible without an article-by-article audit of each journal to make absolute comparisons. For example, more than 20 percent of the articles in Cell are reviews. This inflates its already high impact and ranking. Most other journals do not include this proportion of review articles. The New England Journal of Medicine does publish a large number of review articles, but most leading biomedical research journals do not.

The data reported here are subject to human error, since they are a derivative of a large database. It is impossible to equate all publishing units involved, but I believe that the results reported will generally support independent peer-review judgments of the importance of these journals in contemporary life sciences. Every reasonable effort has been made to ensure accuracy, but the original data sources should be consulted to validate the results.
<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Source C Itations '81-'95</th>
<th>Year Rank '83</th>
<th>IF Rank '81-'92</th>
<th>IF Rank '89-'90</th>
<th>IF Rank '81-'95</th>
<th>Year Rank '89-'95</th>
<th>IF Rank '81-'95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>803</td>
<td>137.4</td>
<td>1</td>
<td>2</td>
<td>977</td>
<td>157,456</td>
<td>161.2</td>
</tr>
<tr>
<td>New England Journal of Medicine</td>
<td>757</td>
<td>117.7</td>
<td>2</td>
<td>1</td>
<td>742</td>
<td>82,163</td>
<td>110.7</td>
</tr>
<tr>
<td>Journal of Experimental Medicine</td>
<td>665</td>
<td>91.8</td>
<td>3</td>
<td>4</td>
<td>780</td>
<td>53,340</td>
<td>68.4</td>
</tr>
<tr>
<td>Journal of Cell Biology</td>
<td>812</td>
<td>87.7</td>
<td>4</td>
<td>7</td>
<td>969</td>
<td>60,194</td>
<td>62.1</td>
</tr>
<tr>
<td>Proceedings of the National Academy of Sciences</td>
<td>3,206</td>
<td>87.1</td>
<td>5</td>
<td>8</td>
<td>4,262</td>
<td>254,452</td>
<td>59.7</td>
</tr>
<tr>
<td>Archives of General Psychiatry</td>
<td>313</td>
<td>83.7</td>
<td>6</td>
<td>18</td>
<td>233</td>
<td>11,907</td>
<td>51.9</td>
</tr>
<tr>
<td>Journal of Clinical Investigation</td>
<td>735</td>
<td>80.4</td>
<td>7</td>
<td>11</td>
<td>1,100</td>
<td>53,456</td>
<td>48.6</td>
</tr>
<tr>
<td>Nature</td>
<td>2,737</td>
<td>79.0</td>
<td>8</td>
<td>6</td>
<td>2,169</td>
<td>214,942</td>
<td>99.1</td>
</tr>
<tr>
<td>Journal of Molecular Biology</td>
<td>668</td>
<td>72.1</td>
<td>9</td>
<td>19</td>
<td>800</td>
<td>26,744</td>
<td>33.4</td>
</tr>
<tr>
<td>Science</td>
<td>2,065</td>
<td>70.8</td>
<td>10</td>
<td>9</td>
<td>1,684</td>
<td>178,622</td>
<td>106.1</td>
</tr>
<tr>
<td>Molecular and Cellular Biology</td>
<td>305</td>
<td>68.1</td>
<td>11</td>
<td>24</td>
<td>1,528</td>
<td>63,608</td>
<td>41.6</td>
</tr>
<tr>
<td>Journal of Neuroscience</td>
<td>303</td>
<td>65.3</td>
<td>12</td>
<td>5</td>
<td>774</td>
<td>30,749</td>
<td>39.7</td>
</tr>
<tr>
<td>Brain</td>
<td>89</td>
<td>64.6</td>
<td>13</td>
<td>215</td>
<td>189</td>
<td>4,746</td>
<td>25.1</td>
</tr>
<tr>
<td>EMBO Journal</td>
<td>227</td>
<td>64.4</td>
<td>14</td>
<td>25</td>
<td>1,022</td>
<td>68,320</td>
<td>66.8</td>
</tr>
<tr>
<td>Circulation Research</td>
<td>441</td>
<td>61.6</td>
<td>15</td>
<td>30</td>
<td>629</td>
<td>19,935</td>
<td>24.0</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>465</td>
<td>60.2</td>
<td>16</td>
<td>23</td>
<td>798</td>
<td>19,138</td>
<td>24.0</td>
</tr>
<tr>
<td>Annals of Internal Medicine</td>
<td>607</td>
<td>58.9</td>
<td>17</td>
<td>10</td>
<td>509</td>
<td>22,824</td>
<td>44.8</td>
</tr>
<tr>
<td>Journal of Histochemistry & Cytochemistry</td>
<td>365</td>
<td>57.1</td>
<td>18</td>
<td>52</td>
<td>453</td>
<td>5,061</td>
<td>15.6</td>
</tr>
<tr>
<td>Nucleic Acids Research</td>
<td>1,196</td>
<td>57.0</td>
<td>19</td>
<td>16</td>
<td>3,473</td>
<td>62,341</td>
<td>18.0</td>
</tr>
<tr>
<td>Journal of General Physiology</td>
<td>163</td>
<td>56.8</td>
<td>20</td>
<td>110</td>
<td>223</td>
<td>6,278</td>
<td>28.2</td>
</tr>
<tr>
<td>Journal of Comparative Neurology</td>
<td>636</td>
<td>55.9</td>
<td>21</td>
<td>35</td>
<td>971</td>
<td>23,029</td>
<td>23.7</td>
</tr>
<tr>
<td>Journal of Immunology</td>
<td>1,988</td>
<td>55.3</td>
<td>22</td>
<td>15</td>
<td>2,508</td>
<td>93,080</td>
<td>37.1</td>
</tr>
<tr>
<td>Journal of Biological Chemistry</td>
<td>4,600</td>
<td>55.1</td>
<td>23</td>
<td>19</td>
<td>6,627</td>
<td>243,943</td>
<td>36.8</td>
</tr>
<tr>
<td>Astrophysical Journal Supplement Series</td>
<td>136</td>
<td>54.9</td>
<td>24</td>
<td>48</td>
<td>206</td>
<td>5,693</td>
<td>27.6</td>
</tr>
<tr>
<td>Blood</td>
<td>767</td>
<td>54.2</td>
<td>25</td>
<td>17</td>
<td>1,413</td>
<td>54,271</td>
<td>38.4</td>
</tr>
<tr>
<td>Circulation</td>
<td>928</td>
<td>53.8</td>
<td>26</td>
<td>12</td>
<td>990</td>
<td>36,424</td>
<td>36.8</td>
</tr>
<tr>
<td>Journal of Neurophysiology</td>
<td>337</td>
<td>52.2</td>
<td>27</td>
<td>56</td>
<td>465</td>
<td>11,673</td>
<td>25.1</td>
</tr>
<tr>
<td>Lancet</td>
<td>1,288</td>
<td>51.5</td>
<td>28</td>
<td>3</td>
<td>942</td>
<td>44,982</td>
<td>47.8</td>
</tr>
<tr>
<td>Hepatology</td>
<td>189</td>
<td>51.3</td>
<td>29</td>
<td>199</td>
<td>522</td>
<td>11,389</td>
<td>21.8</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>647</td>
<td>50.4</td>
<td>30</td>
<td>21</td>
<td>887</td>
<td>21,287</td>
<td>24.0</td>
</tr>
<tr>
<td>American Journal of Medicine</td>
<td>625</td>
<td>48.6</td>
<td>31</td>
<td>28</td>
<td>987</td>
<td>13,660</td>
<td>13.8</td>
</tr>
<tr>
<td>Journal of Physiology-London</td>
<td>900</td>
<td>48.3</td>
<td>32</td>
<td>77</td>
<td>866</td>
<td>23,001</td>
<td>26.6</td>
</tr>
<tr>
<td>Diabetes</td>
<td>473</td>
<td>48.0</td>
<td>33</td>
<td>26</td>
<td>547</td>
<td>13,275</td>
<td>24.3</td>
</tr>
<tr>
<td>Physical Review Letters</td>
<td>2,028</td>
<td>47.3</td>
<td>34</td>
<td>14</td>
<td>3,054</td>
<td>109,227</td>
<td>35.8</td>
</tr>
<tr>
<td>Laboratory Investigation</td>
<td>292</td>
<td>45.5</td>
<td>35</td>
<td>36</td>
<td>330</td>
<td>8,381</td>
<td>25.4</td>
</tr>
<tr>
<td>Analytical Biochemistry</td>
<td>1,181</td>
<td>45.2</td>
<td>36</td>
<td>118</td>
<td>1,026</td>
<td>14,046</td>
<td>13.7</td>
</tr>
<tr>
<td>Gene</td>
<td>334</td>
<td>44.7</td>
<td>37</td>
<td>29</td>
<td>1,163</td>
<td>23,878</td>
<td>20.5</td>
</tr>
<tr>
<td>American Journal of Cardiology</td>
<td>794</td>
<td>44.4</td>
<td>38</td>
<td>20</td>
<td>1,701</td>
<td>21,759</td>
<td>12.8</td>
</tr>
<tr>
<td>Journal of Molecular Evolution</td>
<td>105</td>
<td>43.9</td>
<td>39</td>
<td>13</td>
<td>214</td>
<td>3,976</td>
<td>18.6</td>
</tr>
<tr>
<td>Annals of Neurology</td>
<td>406</td>
<td>43.7</td>
<td>40</td>
<td>78</td>
<td>419</td>
<td>13,150</td>
<td>31.4</td>
</tr>
<tr>
<td>Geochimica et Cosmochimica Acta</td>
<td>405</td>
<td>43.5</td>
<td>41</td>
<td>67</td>
<td>542</td>
<td>10,456</td>
<td>19.3</td>
</tr>
<tr>
<td>Journal of the American Chemical Society</td>
<td>3,717</td>
<td>43.2</td>
<td>42</td>
<td>33</td>
<td>3,968</td>
<td>97,647</td>
<td>24.6</td>
</tr>
<tr>
<td>Pflugers Archiv-European Journal of Physiology</td>
<td>429</td>
<td>43.0</td>
<td>43</td>
<td>105</td>
<td>489</td>
<td>7,711</td>
<td>15.8</td>
</tr>
<tr>
<td>European Journal of Immunology</td>
<td>377</td>
<td>42.3</td>
<td>44</td>
<td>22</td>
<td>814</td>
<td>22,215</td>
<td>27.3</td>
</tr>
<tr>
<td>Journal of Lipid Research</td>
<td>310</td>
<td>42.2</td>
<td>45</td>
<td>53</td>
<td>442</td>
<td>9,760</td>
<td>22.1</td>
</tr>
<tr>
<td>Molecular Pharmacology</td>
<td>395</td>
<td>41.8</td>
<td>46</td>
<td>32</td>
<td>503</td>
<td>14,566</td>
<td>29.0</td>
</tr>
<tr>
<td>Ecology</td>
<td>431</td>
<td>40.7</td>
<td>47</td>
<td>168</td>
<td>423</td>
<td>7,430</td>
<td>17.6</td>
</tr>
<tr>
<td>Journal of Clinical Endocrinology and Metabolism</td>
<td>891</td>
<td>39.9</td>
<td>48</td>
<td>55</td>
<td>913</td>
<td>20,765</td>
<td>22.7</td>
</tr>
<tr>
<td>Journal of Membrane Biology</td>
<td>295</td>
<td>39.6</td>
<td>49</td>
<td>47</td>
<td>303</td>
<td>5,767</td>
<td>19.0</td>
</tr>
<tr>
<td>American Journal of Pathology</td>
<td>349</td>
<td>39.5</td>
<td>50</td>
<td>70</td>
<td>567</td>
<td>18,158</td>
<td>32.0</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>‘81-’82 Source Citations</th>
<th>‘81-’85 IF</th>
<th>15-Year Rank</th>
<th>‘89-90 Source Citations</th>
<th>‘89-95 IF</th>
<th>7-Year Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental Biology</td>
<td>662</td>
<td>26,125</td>
<td>39.5</td>
<td>51</td>
<td>69</td>
<td>557</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>2,193</td>
<td>85,882</td>
<td>39.2</td>
<td>52</td>
<td>40</td>
<td>2,947</td>
</tr>
<tr>
<td>Cancer Research</td>
<td>1,701</td>
<td>65,957</td>
<td>38.6</td>
<td>53</td>
<td>54</td>
<td>2,480</td>
</tr>
<tr>
<td>Journal of Allergy and Clinical Immunology</td>
<td>277</td>
<td>10,679</td>
<td>38.6</td>
<td>54</td>
<td>81</td>
<td>491</td>
</tr>
<tr>
<td>American Review of Respiratory Disease</td>
<td>695</td>
<td>26,573</td>
<td>38.2</td>
<td>55</td>
<td>59</td>
<td>1,039</td>
</tr>
<tr>
<td>Journal of Pharmacology and Exp. Therapeutics</td>
<td>938</td>
<td>35,442</td>
<td>37.8</td>
<td>56</td>
<td>68</td>
<td>1,393</td>
</tr>
<tr>
<td>Journal of Infectious Diseases</td>
<td>539</td>
<td>20,216</td>
<td>37.5</td>
<td>57</td>
<td>46</td>
<td>743</td>
</tr>
<tr>
<td>Hypertension</td>
<td>364</td>
<td>13,646</td>
<td>37.5</td>
<td>58</td>
<td>57</td>
<td>453</td>
</tr>
<tr>
<td>Contributions to Mineralogy and Petrology</td>
<td>241</td>
<td>9,004</td>
<td>37.4</td>
<td>59</td>
<td>181</td>
<td>241</td>
</tr>
<tr>
<td>American Journal of Physiology</td>
<td>1,999</td>
<td>74,138</td>
<td>37.1</td>
<td>60</td>
<td>101</td>
<td>1,433</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>1,410</td>
<td>52,215</td>
<td>37.0</td>
<td>61</td>
<td>102</td>
<td>1,707</td>
</tr>
<tr>
<td>Limnology and Oceanography</td>
<td>260</td>
<td>9,599</td>
<td>36.9</td>
<td>62</td>
<td>155</td>
<td>241</td>
</tr>
<tr>
<td>Kidney International</td>
<td>145</td>
<td>15,041</td>
<td>36.2</td>
<td>63</td>
<td>37</td>
<td>609</td>
</tr>
<tr>
<td>Earth and Planetary Science Letters</td>
<td>394</td>
<td>13,646</td>
<td>36.7</td>
<td>64</td>
<td>84</td>
<td>344</td>
</tr>
<tr>
<td>Annals of Surgery</td>
<td>448</td>
<td>15,939</td>
<td>36.6</td>
<td>65</td>
<td>112</td>
<td>393</td>
</tr>
<tr>
<td>Neuroendocrinology</td>
<td>273</td>
<td>9,711</td>
<td>36.5</td>
<td>66</td>
<td>76</td>
<td>425</td>
</tr>
<tr>
<td>Journal of Virology</td>
<td>1,007</td>
<td>35,686</td>
<td>36.4</td>
<td>67</td>
<td>35</td>
<td>1,658</td>
</tr>
<tr>
<td>American Journal of Epidemiology</td>
<td>348</td>
<td>12,309</td>
<td>36.3</td>
<td>68</td>
<td>145</td>
<td>480</td>
</tr>
<tr>
<td>Proceedings of the Royal Society of London</td>
<td>178</td>
<td>6,261</td>
<td>36.2</td>
<td>69</td>
<td>102</td>
<td>195</td>
</tr>
<tr>
<td>Journal of Magnetic Resonance</td>
<td>530</td>
<td>18,623</td>
<td>36.1</td>
<td>70</td>
<td>123</td>
<td>705</td>
</tr>
<tr>
<td>International Journal of Cancer</td>
<td>458</td>
<td>16,077</td>
<td>35.9</td>
<td>71</td>
<td>61</td>
<td>791</td>
</tr>
<tr>
<td>Nuclear Physics B</td>
<td>1,014</td>
<td>35,366</td>
<td>35.8</td>
<td>72</td>
<td>72</td>
<td>1,251</td>
</tr>
<tr>
<td>Diabetologia</td>
<td>360</td>
<td>12,549</td>
<td>35.7</td>
<td>73</td>
<td>41</td>
<td>259</td>
</tr>
<tr>
<td>Pain</td>
<td>153</td>
<td>5,308</td>
<td>35.6</td>
<td>74</td>
<td>232</td>
<td>310</td>
</tr>
<tr>
<td>Brain Research</td>
<td>2,383</td>
<td>82,465</td>
<td>35.5</td>
<td>75</td>
<td>99</td>
<td>3,212</td>
</tr>
<tr>
<td>Astrophysical Journal</td>
<td>2,707</td>
<td>93,577</td>
<td>35.4</td>
<td>76</td>
<td>48</td>
<td>2,955</td>
</tr>
<tr>
<td>Evolution</td>
<td>256</td>
<td>8,790</td>
<td>35.3</td>
<td>77</td>
<td>211</td>
<td>301</td>
</tr>
<tr>
<td>Journal of Neurochemistry</td>
<td>1,042</td>
<td>34,221</td>
<td>35.3</td>
<td>78</td>
<td>73</td>
<td>1,144</td>
</tr>
<tr>
<td>Naunyn-Schmiedebergs Archives of Pharmacology</td>
<td>364</td>
<td>11,936</td>
<td>35.2</td>
<td>79</td>
<td>57</td>
<td>424</td>
</tr>
<tr>
<td>Cancer</td>
<td>1,835</td>
<td>59,958</td>
<td>35.1</td>
<td>80</td>
<td>136</td>
<td>1,736</td>
</tr>
<tr>
<td>Biochemical Journal</td>
<td>1,673</td>
<td>54,267</td>
<td>35.0</td>
<td>81</td>
<td>89</td>
<td>2,073</td>
</tr>
<tr>
<td>Gut</td>
<td>364</td>
<td>11,775</td>
<td>34.9</td>
<td>82</td>
<td>64</td>
<td>558</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>1,519</td>
<td>48,959</td>
<td>34.8</td>
<td>83</td>
<td>67</td>
<td>1,158</td>
</tr>
<tr>
<td>American Journal of Psychiatry</td>
<td>651</td>
<td>20,917</td>
<td>34.7</td>
<td>84</td>
<td>94</td>
<td>476</td>
</tr>
<tr>
<td>European Journal of Biochemistry</td>
<td>1,522</td>
<td>48,627</td>
<td>34.6</td>
<td>85</td>
<td>72</td>
<td>1,461</td>
</tr>
<tr>
<td>Stroke</td>
<td>264</td>
<td>8,400</td>
<td>34.5</td>
<td>86</td>
<td>148</td>
<td>556</td>
</tr>
<tr>
<td>American Journal of Clinical Nutrition</td>
<td>699</td>
<td>22,044</td>
<td>34.4</td>
<td>87</td>
<td>139</td>
<td>708</td>
</tr>
<tr>
<td>Neurology</td>
<td>575</td>
<td>18,114</td>
<td>34.3</td>
<td>88</td>
<td>214</td>
<td>847</td>
</tr>
<tr>
<td>Clinical Pharmacology & Therapeutics</td>
<td>434</td>
<td>13,671</td>
<td>34.2</td>
<td>89</td>
<td>42</td>
<td>319</td>
</tr>
<tr>
<td>Cancer Genetics and Cytogenetics</td>
<td>172</td>
<td>5,336</td>
<td>34.1</td>
<td>90</td>
<td>63</td>
<td>429</td>
</tr>
<tr>
<td>British Journal of Haematology</td>
<td>434</td>
<td>13,426</td>
<td>34.0</td>
<td>91</td>
<td>87</td>
<td>603</td>
</tr>
<tr>
<td>Journal of Investigative Dermatology</td>
<td>415</td>
<td>12,791</td>
<td>33.9</td>
<td>92</td>
<td>86</td>
<td>564</td>
</tr>
<tr>
<td>British Journal of Psychiatry</td>
<td>349</td>
<td>10,724</td>
<td>33.8</td>
<td>93</td>
<td>184</td>
<td>626</td>
</tr>
<tr>
<td>Experimental Brain Research</td>
<td>441</td>
<td>13,513</td>
<td>33.7</td>
<td>94</td>
<td>170</td>
<td>662</td>
</tr>
<tr>
<td>American Journal of Surgical Pathology</td>
<td>151</td>
<td>4,620</td>
<td>33.6</td>
<td>95</td>
<td>94</td>
<td>260</td>
</tr>
<tr>
<td>Journal of Applied Physiology</td>
<td>972</td>
<td>29,635</td>
<td>33.5</td>
<td>96</td>
<td>164</td>
<td>1,437</td>
</tr>
<tr>
<td>American Naturalist</td>
<td>364</td>
<td>11,034</td>
<td>33.4</td>
<td>97</td>
<td>97</td>
<td>210</td>
</tr>
<tr>
<td>Journal of the National Cancer Institute</td>
<td>635</td>
<td>19,174</td>
<td>33.3</td>
<td>98</td>
<td>110</td>
<td>397</td>
</tr>
<tr>
<td>European Journal of Pharmacology</td>
<td>1,120</td>
<td>33,769</td>
<td>33.2</td>
<td>99</td>
<td>65</td>
<td>1,616</td>
</tr>
<tr>
<td>Journal of Catalysis</td>
<td>599</td>
<td>17,985</td>
<td>33.1</td>
<td>100</td>
<td>189</td>
<td>611</td>
</tr>
</tbody>
</table>

Vol. 41, No. 3, 1998 115
Guyton Teacher of the Year

Connections: Physiology in the Medical Curriculum
Michael G. Levitzky, Louisiana State University Medical Center

When Michael Johnson called to tell me that I would receive this year’s Guyton Award, I was first incredulous, then deeply honored and truly ecstatic.

For a title, I came up with “Connections: Physiology in the Medical Curriculum.” At the time, I was thinking mainly of how important it is for physiology to connect to the clinical curriculum and to the residents and faculty of clinical departments, but the more I thought about it, the more important connections I realized physiology must make. Although this talk is given in the context of the medical school, I know that many in the audience teach in other settings and I hope that much of what I say is relevant to everyone. I also hope that my thoughts will not appear too pompous or like preaching.

In recent years there has been much discussion and debate about the direction and even the definition of physiology. Is it molecular? Cellular? Systemic? Is it, as some of us old timers believe, integrative? The boundaries between molecular physiology, cellular physiology, and other disciplines such as biochemistry and immunology are not clear. How do we maintain our identity and assure our future? I believe that in order to preserve our status as an independent discipline, Physiology (and physiologists) must establish and maintain connections with the rest of the basic science curriculum, with clinical medicine, with learning objectives, with medical and graduate students, with computer-assisted learning (CAL), with our schools, and with the public. These connections will also make us better teachers of physiology. Because of time constraints, I will discuss some of these in greater detail than others.

Connections to other basic science departments at first seems obvious. Many of us collaborate with faculty from other basic science departments in our research. What I want to stress, however, is connecting to other basic science departments in our teaching. We need to know exactly what they are teaching to avoid unintentional repetition. We must also be sure that the story we are telling is consistent with that given by other departments when they cover the same subject. This became more apparent to us when we instituted interdepartmental combined examinations in the first two years of the medical curriculum. These tests cover material from all the courses the medical students are taking at the same time. Our concept was to discourage cramming, improve the students’ time management, and better prepare them for the USMLE. The order of questions is randomized, with no regard to what course they come from. Students told us that to answer a question correctly, they need to know what course the question came from because different courses told them different things. The same answer could be correct or incorrect, depending on who wrote the question. We had also hoped to foster writing questions or scenarios representing content from more than one course, a goal we have obviously not yet accomplished.

Connecting to clinical medicine, as I have already stated, was what I was thinking about when I came up with the title of this talk. Participating in ICM or similar courses, third and fourth year courses, and teaching residents and fellows has probably benefited me at least as much as it has those receiving the lectures, especially when clinical faculty attended and participated. From my experiences teaching anesthesiology and surgery residents and pulmonary and neonatology fellows I have learned what our first year students will need to know. I have learned not only what is relevant, but what is actually used in the practice of medicine. The Bohr equation for calculating physiological dead space (and alveolar dead space) is relevant, but not used; the shunt equation is both. Participating in resident and fellow instruction has shown me how the material I am teaching is important clinically. Participating in clinical case presentations with other basic science and clinical faculty in our ICM course has forced me to learn some pulmonary pathophysiology and to relate the underlying physiology to the patient. I am both a better teacher and a better textbook writer as a result.

Just as it is important to connect physiology to the third and fourth year of medical school and to postgraduate medical training, it is important to connect clinical medicine to the first-year physiology course. We have more than 20 hours of lectures, case presentations, and even a small group session in our Medical Physiology Course. The presentations are carefully coordinated to the material being covered, and a real effort has been made to have the presenter show how important the underlying physiology and pathophysiology are to understanding and treating the problems of patients. Presenters have been chosen over the years by strict empirical methods (that is, trial and error). Connecting to objectives is standard procedure for the members of the Teaching of Physiology Section. Each lecture or other instructional activity should have clearly stated learning objectives that are available to the students. These objectives should be used as the framework for student evaluation. My point is that these objectives should be developed with faculty from appropriate clinical departments and faculty from other basic science departments. This seems especially important as the Association of American Medical Colleges is developing learning objectives for medical student education in the Medical School Objectives Project. Thus far these objectives for the basic sciences are quite general, but they may not be so nonspecific in the future, especially in view of one of their other projects, which is to compile in a standardized World Wide Web-based format the curricula of all medical schools. This curriculum database project, as many of you know, is called CurriMIT (for Curriculum Management and Information Tool).

Connecting to medical students enhances their ability to learn physiology. Over the years I have found many ways to improve this connection. One is to show

Michael G. Levitzky received the sixth annual Arthur C. Guyton Physiology Teacher of the Year Award. The following is a speech delivered by Levitzky as he was presented the award at Experimental Biology ’98 in San Francisco, CA in April 1998.
them that you care about them as individuals; learning as many of their names as you can is a good start. Personal contact in laboratories and in small group instruction (even outside physiology—I have facilitated small groups in our Medical Ethics, Social Issues in Medicine and Problem-based Learning (PBL) Courses] is another way to interact with students on a personal basis. Unfortunately there are far fewer laboratories these days, so the more individual aspects of instruction may have to be in PBL or other situations, including social gatherings. Strongly encouraging students to come to ask questions or discuss material is another way to get to know students as individuals. In all interactions with them, it is important to treat them as colleagues or at least future colleagues.

Connecting to medical students (and connecting them to physiology) is much easier when you show them your enthusiasm for and excitement about physiology. I have been told a number of times that lectures are both more interesting and easier to remember if they appear to tell a story. Occasional humor (even if it is as bad as mine) is an invaluable method for renewing students’ attention. Of course, our humor must be politically correct these days.

Remember that most medical students are not interested in research. They do not want to hear several opposing hypotheses, they want “facts.” Guyton (the textbook, not the person) has always been dogmatic and a lot of copies of Guyton have not only been sold, but have even been read. It is our responsibility to encourage medical students to read and think critically. We must foster their interest in research and help them understand that everything in physiology and the rest of medicine is not either black or white as it is in most texts, but that much of it is gray.

Connecting to graduate students is very different from connecting to medical students. Many of the issues discussed about medical students are not a concern with graduate students because of the much more personal nature of graduate education. We spend many hours in one-on-one instruction in the laboratory or in small classes. Mentoring graduate students is a topic worthy of its own discussion, and I have heard Barbara Horwitz, a previous recipient of the Guyton Award, talk about that in the past. I would like to state that it is important for their future careers as teachers, researchers, and grant applicants that we connect our graduate students to the clinical knowledge base appropriate to their research area. Another way to connect our graduate students to their futures is to help them improve their communications skills, both speech and writing. Although this may be obvious in students for whom English is a second language, it is just as important (and sometimes just as necessary) in those for whom it is not. This should be more than helping them prepare a manuscript for submission to a journal or write an abstract or a grant application. It should be designed to improve their ability to write, not simply to rewrite what they have written. It should also include help in planning and delivering oral presentations, not only seminars, but formal lectures to students.

My other words of alleged wisdom concerning graduate students is that you can not tell them anything. By that I mean that graduate students, at least the ones I have had in my laboratory, must prove things to themselves. They would not take my word for anything and that is exactly how it should be. Again, we must treat our graduate students like colleagues or at least future colleagues.

I have just a few more connections to mention. First, we must make use of computer-assisted learning (CAL) in physiology (and medical) education. Many of the people in this room have been pioneers in this, so I do not feel that I need to discuss it, nor am I qualified. But I do feel that many of us can increase the use of computer simulations and the internet in our teaching. Some of the currently available simulations really can be used to replace part, but certainly not all, of what we have taught in the laboratory. Certainly some aspects of problem solving and critical thinking can be learned from such programs. However, CAL must be required of the students and not merely elective. Furthermore, CAL is by nature an individual activity, so we must take care to use laboratories, PBL, or other activities to preserve the personal touch with our students as we increase CAL in our instruction. Second, I think that it is important for physiology faculty to be connected to their schools. This means interacting with faculty from other departments in teaching efforts and serving on committees as well. These are not only personally rewarding, but they raise the profile of physiology as a department and as a discipline within your school because we repeatedly identify ourselves as being from or representing the Physiology Department. As John Spitzer emphatically pointed out to me early in my career, it is also important to attend your school’s social functions. Finally, as last year’s Guyton Award recipient, Donald Frazier, told us, it is important to connect to the public by outreach programs to schools, high schools, and colleges, and to involve both students and their teachers. This can be done by participating in science awareness programs, summer research programs, and many other ways. These programs can serve many purposes, including recruitment of graduate and medical students (especially from underrepresented groups, if that is still allowed), explaining how the body works, and showing how science and research really work. The last may be our most important task because of the generally poor coverage of science by the mass media.

In conclusion, I hope that I have demonstrated both the importance of connecting physiology (and physiologists) to the medical school curriculum and to students and faculty, and some means of doing so. Once again, thank you for selecting me as this year’s Guyton Award recipient.

Rob Carroll presents the Teacher of the Year award to Michael Levitzky.
Membership Benefits

The American Physiological Society

Membership Benefits you get...

- Access to all (14) APS online journals for $49.50 a year.
- 20% discount on subscription to Annual Reviews
- FREE subscriptions to three APS journals: The Physiologist, News in Physiological Sciences, and Advances in Physiology Education
- FREE subscription to The Scientist
- 50% discount on all other APS renowned primary research journals
- 35% discount on APS scholarly books distributed by Oxford University Press
- FREE expedited mail for APS journals shipped outside of the Americas
- Discount registration rates for Experimental Biology and other APS meetings
- Participation in APS education programs
- Participation in APS honors and awards programs
- Participation in the scientific section of your choice
- Access to benefits and privileges available to FASEB Society members (including FASEB Directory of Members)
- An influential voice in Washington, D.C.
- An opportunity to network with peers and join other members in the promotion of the physiological sciences

Special (Additional) Membership Benefits for Students...

- FREE student membership the first year; $15 each additional year (maximum of 4 years)
- 75% off the nonmember individual subscription rate on one APS journal of your choice (50% off any others)

Professional Networking Opportunities...

- Serve on APS sections...representing cardiovascular, cell and general physiology, central nervous system, comparative, endocrinology and metabolism, environmental and exercise, gastrointestinal, neural control and autonomic regulation, renal, respiration, teaching of physiology, and water and electrolyte homeostasis
- Serve on special interest groups...including muscle, hypoxia, the history of physiology, epithelial transport, and physiologists in industry
- Organize an APS conference
- Serve on APS Society Committees...including Animal Care and Experimentation, Committee on Committees, Education, Finance, Membership, Programs, Publications, Public Affairs, Awards, Career Opportunities in Physiology, Nominating Committee, Section Advisory, Women in Physiology, and Senior Physiologists
- Serve on FASEB boards and committees

For more information about membership in The American Physiological Society, simply fax or mail us the following information today:

Name ___________________________ E-mail ___________________________
Address ___
City ___________________________ State ________ Zip/Postal Code ____________
Country ___________________________ Phone ___________________________ Fax ___________________________

The American Physiological Society ● Membership Services Department
9650 Rockville Pike, Bethesda, MD 20814-3991 ● Phone (301) 530-7171 ● E-mail: members@aps.faseb.org
For Fastest Response, Fax to 301-571-8313
Membership Statistics

Total Membership
8,351

Distribution by Employment
(7,526 respondents)

<table>
<thead>
<tr>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology depts.</td>
<td>2,490</td>
</tr>
<tr>
<td>Other preclinical depts.</td>
<td>596</td>
</tr>
<tr>
<td>Clinical</td>
<td>1,679</td>
</tr>
<tr>
<td>Administration</td>
<td>46</td>
</tr>
<tr>
<td>Hospitals and clinics</td>
<td>306</td>
</tr>
<tr>
<td>Veterinary schools</td>
<td>152</td>
</tr>
<tr>
<td>Dental schools</td>
<td>39</td>
</tr>
<tr>
<td>Public health and grad. schools</td>
<td>132</td>
</tr>
<tr>
<td>College or university</td>
<td>1,215</td>
</tr>
<tr>
<td>Commercial companies</td>
<td>204</td>
</tr>
<tr>
<td>Government</td>
<td>369</td>
</tr>
<tr>
<td>Institutes and foundations</td>
<td>200</td>
</tr>
<tr>
<td>Private practice</td>
<td>35</td>
</tr>
<tr>
<td>Other, emeritus or inactive</td>
<td>63</td>
</tr>
</tbody>
</table>

Distribution by Racial Background and Heritage
(3,282 respondents)

<table>
<thead>
<tr>
<th>Total respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Indian or Alaskan</td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Hispanic</td>
</tr>
</tbody>
</table>

Distribution by Earned Degree
(6,903 respondents — includes 1,192 individuals with multiple doctorate degrees)

<table>
<thead>
<tr>
<th>Total respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
</tr>
<tr>
<td>MD</td>
</tr>
<tr>
<td>DVM</td>
</tr>
<tr>
<td>ScD</td>
</tr>
<tr>
<td>DDS</td>
</tr>
<tr>
<td>EDD</td>
</tr>
<tr>
<td>Cand. Med.</td>
</tr>
</tbody>
</table>

Distribution by Sex
(3,282 respondents)

<table>
<thead>
<tr>
<th>Total respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
</tbody>
</table>

Distribution by Age
(3,282 respondents)

<table>
<thead>
<tr>
<th>Total respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>70+</td>
</tr>
<tr>
<td>60-69</td>
</tr>
<tr>
<td>50-59</td>
</tr>
<tr>
<td>40-49</td>
</tr>
<tr>
<td>30-39</td>
</tr>
<tr>
<td>20-29</td>
</tr>
</tbody>
</table>

Principal Type of Work
(7,596 respondents)

<table>
<thead>
<tr>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
</tr>
<tr>
<td>Teaching</td>
</tr>
<tr>
<td>Clinical</td>
</tr>
<tr>
<td>Administration</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Distribution Primary by Section Affiliation
(7,471 respondents)

<table>
<thead>
<tr>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
</tr>
<tr>
<td>Respiration</td>
</tr>
<tr>
<td>Cell & General</td>
</tr>
<tr>
<td>Endocrinology and Metabolism</td>
</tr>
<tr>
<td>Environmental and Exercise</td>
</tr>
<tr>
<td>Renal</td>
</tr>
<tr>
<td>Central Nervous System</td>
</tr>
<tr>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Comparative</td>
</tr>
<tr>
<td>Neural Control and Autonomic Regu.</td>
</tr>
<tr>
<td>Teaching of Physiology</td>
</tr>
<tr>
<td>Water and Electrolyte Homeostasis</td>
</tr>
</tbody>
</table>

Distribution by Group Affiliation
(3,282 respondents)

<table>
<thead>
<tr>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyoBio/Muscle Group</td>
</tr>
<tr>
<td>Epithelial Transport Group</td>
</tr>
<tr>
<td>History of Physiology Group</td>
</tr>
<tr>
<td>Hypoxia Group</td>
</tr>
<tr>
<td>Members in Industry Group</td>
</tr>
</tbody>
</table>

Distribution by Primary Specialty
(7,471 respondents)

<table>
<thead>
<tr>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia</td>
</tr>
<tr>
<td>Anatomy and embryology</td>
</tr>
<tr>
<td>Biochemistry</td>
</tr>
<tr>
<td>Biophysics</td>
</tr>
<tr>
<td>Biomedical engineering</td>
</tr>
<tr>
<td>Blood</td>
</tr>
<tr>
<td>Cardiovascular</td>
</tr>
<tr>
<td>Cellular and tissue</td>
</tr>
<tr>
<td>Comparative physiology</td>
</tr>
<tr>
<td>Electrolytes and water balance</td>
</tr>
<tr>
<td>Endocrinics</td>
</tr>
<tr>
<td>Energy metabolism and temperature</td>
</tr>
<tr>
<td>Environment</td>
</tr>
<tr>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>General physiology</td>
</tr>
<tr>
<td>Gerontology</td>
</tr>
<tr>
<td>Immunology</td>
</tr>
<tr>
<td>Liver and bile</td>
</tr>
<tr>
<td>Lipids and steroids</td>
</tr>
<tr>
<td>Minerals, bone, and teeth</td>
</tr>
<tr>
<td>Muscle and exercise</td>
</tr>
<tr>
<td>Neurosciences</td>
</tr>
<tr>
<td>Nutrition and food</td>
</tr>
<tr>
<td>Pharmacology</td>
</tr>
<tr>
<td>Radiology</td>
</tr>
<tr>
<td>Renal</td>
</tr>
<tr>
<td>Reproduction</td>
</tr>
<tr>
<td>Respiration</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

APS Membership in the Americas

US	7,409
Canada	397
Brazil	31
Mexico	14
Argentina	8
Chile	6
Peru	4
Venezuela	4
Grenada	2
Jamaica	2
British West Indies	1
Costa Rica	1

US States With More Than 100 Members
(50 states plus District of Columbia, Puerto Rico, Guam, and the Virgin Islands)

<table>
<thead>
<tr>
<th>State</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>804</td>
</tr>
<tr>
<td>New York</td>
<td>584</td>
</tr>
<tr>
<td>Texas</td>
<td>502</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>427</td>
</tr>
<tr>
<td>Maryland</td>
<td>360</td>
</tr>
<tr>
<td>Illinois</td>
<td>337</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>333</td>
</tr>
<tr>
<td>Ohio</td>
<td>308</td>
</tr>
<tr>
<td>Michigan</td>
<td>253</td>
</tr>
<tr>
<td>North Carolina</td>
<td>195</td>
</tr>
<tr>
<td>Florida</td>
<td>209</td>
</tr>
<tr>
<td>New Jersey</td>
<td>185</td>
</tr>
<tr>
<td>Missouri</td>
<td>192</td>
</tr>
<tr>
<td>Virginia</td>
<td>152</td>
</tr>
<tr>
<td>Connecticut</td>
<td>150</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>148</td>
</tr>
<tr>
<td>Georgia</td>
<td>146</td>
</tr>
<tr>
<td>Tennessee</td>
<td>150</td>
</tr>
<tr>
<td>Louisiana</td>
<td>133</td>
</tr>
<tr>
<td>Indiana</td>
<td>131</td>
</tr>
<tr>
<td>Minnesota</td>
<td>134</td>
</tr>
<tr>
<td>Washington</td>
<td>124</td>
</tr>
<tr>
<td>Alabama</td>
<td>116</td>
</tr>
<tr>
<td>Iowa</td>
<td>115</td>
</tr>
<tr>
<td>Colorado</td>
<td>123</td>
</tr>
<tr>
<td>Arizona</td>
<td>112</td>
</tr>
<tr>
<td>Kentucky</td>
<td>103</td>
</tr>
</tbody>
</table>

APS Membership Outside the Americas
(countries with five or more members)

<table>
<thead>
<tr>
<th>Country</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>168</td>
</tr>
<tr>
<td>Germany</td>
<td>100</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>82</td>
</tr>
<tr>
<td>France</td>
<td>71</td>
</tr>
<tr>
<td>South Korea</td>
<td>54</td>
</tr>
<tr>
<td>Australia</td>
<td>51</td>
</tr>
<tr>
<td>Italy</td>
<td>39</td>
</tr>
<tr>
<td>Denmark</td>
<td>37</td>
</tr>
<tr>
<td>Switzerland</td>
<td>39</td>
</tr>
<tr>
<td>Netherlands</td>
<td>34</td>
</tr>
<tr>
<td>Spain</td>
<td>26</td>
</tr>
<tr>
<td>Belgium</td>
<td>26</td>
</tr>
</tbody>
</table>
Membership

Election of New Regular Members (114)

Joel Abramowitz
Baylor College of Medicine

Ralph Adolphs
University of Iowa

Peter Agre
Johns Hopkins University

Babu Balagopal
Nemoures Children’s Clinic

Marcus M. Bamman
University of Alabama-Birmingham

Purris Bedenbaugh,
University of California-San Francisco

Joseph Lee Beverly III
Univ. of Illinois at Urbana-Champaign

Margaret C. Biber
Medical College of Virginia-VCU

Timothy R. Billar
Presbyterian University Hospital

Kurt E. Borg
University of North Dakota

Janet L. Branchaw
University of Wisconsin

Peter R. Brink
State University of NY-Stony Brook

Holly M. Brown-Borg
University of North Dakota

John B. Buckwalter
Medical College of Wisconsin

M. Catherine Bushnell
McGill University

Marco Eugenio Cabrera
Case Western Reserve University

Joseph C. Callaway
University of Tennessee

Dario I. Carrasco
Emory University

Ethan Phillip Carter
University of Colorado

Mary E. Chamberlin
Ohio University

Scott H. Chandler
University of California-Los Angeles

Paul M. Chatham
University of Colorado

Marilyn J. Cipolla
Oregon Health Science University

Robert J. Coffey, Jr.
Vanderbilt University

Mitchell B. Cohen
Children’s Hospital Medical Center

Heidi L. Collins
Northeastern Ohio University

Christian A. Combs
NHLBI, NIH

Peter Constable
University of Illinois

Paul J. Cordo
R.S. Dow Neurological Science Institute

Ronald N. Cortright
East Carolina University

Kathleen E. Cullen
McGill University

Robert A. Darnall
Dartmouth-Hitchcock Medical Center

Michael Deschenes
College of William and Mary

Marek Duszyk
University of Alberta

Ann M. Dvorak
Beth Israel Deaconess Medical Center

Harold F. Dvorak
Beth Israel Deaconess Medical Center

Carolyn A. Ecelbarger
NHLBI, NIH

Sarah Katherine England
University of Iowa

Ricardo Espinosa-Tanguma
University of Aut de San Luis Potosi

William J. Evans
University of Arkansas

John R. Fabian
Pennsylvania State University

Andrew J. Fuglenand
University of Arizona

Michael Gropper
University of California-San Francisco

Jian-Wei Gu
University of Mississippi Medical Center

*Andrew John Halayko
University of Chicago

M. Hamilton-Wessler
University of Southern California

Gene Andrew Hines
University of Alabama-Birmingham

Matthew A. Howard
University of Iowa Hospitals

Antal G. Hudetz
Medical College of Wisconsin

Brooks M. Hybertson
University of Colorado

Stephen R. Ikeda
Guthrie Research Institute

Harry Ischiropoulos
University of Pennsylvania

Saleem Jahangeer
NIEHS/NIH

Lucky Jain
Emory University

Partap Singh Khalsa
State University of New York

Membership Statistics

Other Countries Represented: Belarus, Cameroon, Czech Republic, Iceland, Indonesia, Ireland, Luxembourg, Philippines, Portugal, Russia, SW Africa, Saudi Arabia, Serbia, Thailand, Ukraine, United Arab Emirates.

Canadian Provinces With Five or More Members

Ontario 168
British Columbia 142
Quebec 87
Alberta 44
Manitoba 21
Saskatchewan 11
Nova Scotia 10

Other Provinces Represented: New Brunswick and Newfoundland.
Membership

Song-Jung Kim
Allegheny University

Rajiv Kumar
Emory University

Lisa R. Leon
Lovelace Respiratory Research Inst.

Richard B. Levine
University of Arizona

Li-Hsien Lin
University of Iowa VAMC

Youhua Liu
Rhode Island Hospital

Dragutin Loncar
Loma Linda University

Gordon J. Lutz
University of California, San Diego

Dave A. MacLean
Pennsylvania State University

James G. McElligott
Temple University

Jose Geraldo Mill
Federal University of Espirito Santo

Joseph P. Mizgerd
Harvard School of Public Health

Sukhbir S. Mokha
Medical College of Wisconsin

David Morilik
University of Texas-San Antonio

Kendall F. Morris
University of Southern Florida

Ferid Murad
University of Texas-Houston

Douglas Neufeld
University of Arizona

Colleen J. Nolan
St. Mary’s University

Louise C. Nuttle
University of Mississippi

Timothy P. O’Connor
University of California-Los Angeles

Donata Oertel
University of Wisconsin

Gibson K. Oriji
NHLBI, NIH

Robert Paine III
Veterans Affairs Medical Center

Janet L. Parker
University of Missouri-Columbia

Nicola C. Partridge
St. Louis University

Steve Ian Perlmutter
University of Washington

Massroor Pourcyrous
University of Tennessee-Memphis

Miodrag Radulovacki
University of Illinois

George B. Richerson
Yale University

Richard A. Schmiedt
Medical University of South Carolina

Christine Schnackenberg
Georgetown University

Jeffry D. Shearer
University of Minnesota

Weibin Shi
University of California-Los Angeles

Harold A. Singer
Pennsylvania State University

James E. Smith
Wake Forest University

Michael J. Soares
University of Kansas

D. Lowell Stacy
Otsuka America Pharmaceutical, Inc.

Randolph H. Stewart
Texas A&M University

Peter L. Strick
State University of NY-Syracuse

Edward M. Stricker
University of Pittsburgh

Margaret J. Sullivan
Dalton Cardiovascular Research Center

E. Truitt Sutton
University of South Florida

Steven Swapp
Williams College

J. Andrew Taylor
HRCA Research & Training Institute

Andrew P. Thomas
Univ. of Med. and Dentistry of New Jersey

Ronald G. Thurman
University of North Carolina

Daniel Tranel
University of Iowa

Jonathan D. Victor
Cornell University

Wendy W. Waters
NASA - Johnson Space Center

Douglas A. Weisent
University of Alabama-Birmingham

Joel V. Weinstock
University of Iowa

Mark L. Weiss
Kansas State University

C. Roger White
University of Alabama-Birmingham

Nancy Elaine Woodley
Ohio Northern University

Lei Xi
Medical College of Virginia

Jason Z. Xu
Vanderbilt Medical Center

C. Chris Yun
Johns Hopkins University

Zofia Zukowska-Grojec
Georgetown University

Charles F. Zwemer
Dickinson College

Election of New Corresponding Members (34)

Jean-Michel Achard
Hospital Sante Picardie, Amiens

Issahar Ben-Dov
Tel-Hashomer Medical Center

Branko Braam
University of Utrecht

Inma Castilla-Cortazar
University of De Navarra

Martin Diener
University of Giessen

Konstantina Dipla
Temple University

Jean-Francois Dufour
University of Bern

Muhammad Emaduddin
Ludwig Institute for Cancer Research

Ole Frederiksen
The Panum Institute

Peter B. Frappell
Latrobe University

Liang-Wu Fu
University of California-Davis

Gotthold Gabel
Institute of Veterinary Physiology, Leipzig

Hans Geissler
University of Cologne

Rainer F. Greger
Albert Ludwigs University

Youfei Guan
Vanderbilt University

Hanns-Christian Gunga
Free University of Berlin

Riitta Hari
Helsinki University-Technology

Abdallah M. Hayar
University of Virginia

Helena Illnerova
Academy Sciences Czech Republic

Toru Ishikawa
Hospital for Sick Children, Toronto

David Jourd’heuil
Louisiana State University
Membership

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascaline Kremarik-Bouillaud</td>
<td>University of Nancy, St. May, France</td>
</tr>
<tr>
<td>R. N. Lemon</td>
<td>Institute of Neurology, London</td>
</tr>
<tr>
<td>Frederic Libersat</td>
<td>Ben Gurion University</td>
</tr>
<tr>
<td>Zhenwu Lin</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td>Ida J. Llewellyn-Smith</td>
<td>Finders University</td>
</tr>
<tr>
<td>Amel B. Ahmed</td>
<td>Tuskegee University</td>
</tr>
<tr>
<td>Farhad Amiri</td>
<td>University of Montreal</td>
</tr>
<tr>
<td>Debbie Anderson</td>
<td>Michigan State University</td>
</tr>
<tr>
<td>Louise A. Aquila</td>
<td>Cleveland Clinic Foundation</td>
</tr>
<tr>
<td>Joseph Alan Beatty</td>
<td>University of Illinois</td>
</tr>
<tr>
<td>Amy Catherine Bendixen</td>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>Diego Bernal</td>
<td>University of California-San Diego</td>
</tr>
<tr>
<td>Timothy N. Bilodeau</td>
<td>University of Connecticut</td>
</tr>
<tr>
<td>Stephan Brenowitz</td>
<td>University of Wisconsin-Madison</td>
</tr>
<tr>
<td>Briana M. Burton</td>
<td>Northwestern University</td>
</tr>
<tr>
<td>Christie Cafaratti</td>
<td>Case Western Reserve University</td>
</tr>
<tr>
<td>Matthew J. Campen</td>
<td>University of North Carolina</td>
</tr>
<tr>
<td>Huong Diem Can</td>
<td>California State University</td>
</tr>
<tr>
<td>Frank A. Carbone III</td>
<td>Florida State University</td>
</tr>
<tr>
<td>Kelli E. Carnecki</td>
<td>Michigan State University</td>
</tr>
<tr>
<td>Yoli G. Casas</td>
<td>University of Colorado</td>
</tr>
<tr>
<td>Raymond. A. Chitwood</td>
<td>University of Texas-San Antonio</td>
</tr>
<tr>
<td>Tranecia Clarke</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Sonya Denise Coaxum</td>
<td>Meharry Medical College</td>
</tr>
<tr>
<td>Mark Steven Crago</td>
<td>Unif. Services Univ. of the Health Sciences</td>
</tr>
<tr>
<td>Jason W. Daniels</td>
<td>University of California-Davis</td>
</tr>
<tr>
<td>David M. Devilbiss</td>
<td>Allegheny University</td>
</tr>
<tr>
<td>Jeff Dickson</td>
<td>East Tennessee State University</td>
</tr>
<tr>
<td>Dawnelle Diedrich</td>
<td>University of Texas</td>
</tr>
<tr>
<td>J. Victoria Duran</td>
<td>Dickinson College</td>
</tr>
<tr>
<td>Cynthia Dziwogo</td>
<td>Cheyney University</td>
</tr>
<tr>
<td>Deji Ann Edwards</td>
<td>University of Nebraska</td>
</tr>
<tr>
<td>Lawrence Elikan</td>
<td>University of Texas-Arlington</td>
</tr>
<tr>
<td>Geoffrey G. Emerson</td>
<td>Yale University</td>
</tr>
<tr>
<td>Ellen Marie Evans</td>
<td>University of Georgia</td>
</tr>
<tr>
<td>Jenifer Evans</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Kayla Fass</td>
<td>Southwest Texas State University</td>
</tr>
<tr>
<td>Marcelo Febo</td>
<td>University of Puerto Rico</td>
</tr>
<tr>
<td>Dan Fleischer</td>
<td>Allegheny University</td>
</tr>
<tr>
<td>Ellen V. Freund</td>
<td>Stanford University</td>
</tr>
<tr>
<td>Michael Glogauer</td>
<td>University of Toronto</td>
</tr>
<tr>
<td>Nicole C. Goldenstein</td>
<td>Creighton University</td>
</tr>
<tr>
<td>Frederick Gregory</td>
<td>Morehouse College</td>
</tr>
<tr>
<td>Lisa Griffin</td>
<td>University of Western Ontario</td>
</tr>
<tr>
<td>Zhijun Guo</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>Michael K. Hansen</td>
<td>University of Tennessee-Memphis</td>
</tr>
<tr>
<td>Carol Haverty</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Dongmei Wang</td>
<td>Jewish Hospital in St. Louis</td>
</tr>
<tr>
<td>Suante Winberg</td>
<td>Uppsala University</td>
</tr>
<tr>
<td>Mimura Yoshikazu</td>
<td>University of Tokyo</td>
</tr>
<tr>
<td>Mary Kristina Henzel</td>
<td>University of Louisville</td>
</tr>
<tr>
<td>Todd Herron</td>
<td>University of Missouri</td>
</tr>
<tr>
<td>Brad Hodgkinson</td>
<td>University of Texas</td>
</tr>
<tr>
<td>Shunda Rene Irons</td>
<td>University of Missouri-Columbia</td>
</tr>
<tr>
<td>Tonya Lyn Jacobs</td>
<td>University of Hartford</td>
</tr>
<tr>
<td>Michael Gregory Janech</td>
<td>University of South Carolina-Charleston</td>
</tr>
<tr>
<td>Rebecca L. Jaworski</td>
<td>Miami University</td>
</tr>
<tr>
<td>Mark S. Jorgensen</td>
<td>University of Wisconsin-Madison</td>
</tr>
<tr>
<td>Chih-Ching Kao</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Steven P. Keller</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Joan Lau</td>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>Jeffrey J. Legos</td>
<td>Temple University</td>
</tr>
<tr>
<td>Deborah Marie Lenda</td>
<td>West Virginia University</td>
</tr>
<tr>
<td>Helene Levrey</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Jinhong Li</td>
<td>Georgetown University</td>
</tr>
<tr>
<td>Mei Liang</td>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>Mark Lipsett</td>
<td>Simon Fraser University</td>
</tr>
<tr>
<td>Robin C. Looft-Wilson</td>
<td>University of Iowa</td>
</tr>
<tr>
<td>Johnalyn D. Lyles</td>
<td>University of Maryland-Baltimore</td>
</tr>
<tr>
<td>Clara E. Magyar</td>
<td>University of South Carolina</td>
</tr>
<tr>
<td>Devon Suzanne Martin</td>
<td>Arizona State University</td>
</tr>
<tr>
<td>Francisco Javier Martinez</td>
<td>State University of New York, Stony Brook</td>
</tr>
<tr>
<td>Justin Williams</td>
<td>University of Virginia</td>
</tr>
<tr>
<td>Julia M. Williams</td>
<td>University of Rochester</td>
</tr>
<tr>
<td>Kimberley K. Wendell</td>
<td>University of Texas A&M</td>
</tr>
<tr>
<td>Susan J. Winfield</td>
<td>University of Colorado</td>
</tr>
</tbody>
</table>

Approved Student Members (132)

- Adwoa Advonum-McKinney
 - Meharry Medical College
- Amel B. Ahmed
 - Tuskegee University
- Farhad Amiri
 - University of Montreal
- Debbie Anderson
 - Michigan State University
- Louise A. Aquila
 - Cleveland Clinic Foundation
- Joseph Alan Beatty
 - University of Illinois
- Amy Catherine Bendixen
 - University of Cincinnati
- Diego Bernal
 - University of California-San Diego
- Timothy N. Bilodeau
 - University of Connecticut
- Stephan Brenowitz
 - University of Wisconsin-Madison
- Briana M. Burton
 - Northwestern University
- Christie Cafaratti
 - Case Western Reserve University
- Matthew J. Campen
 - University of North Carolina
- Huong Diem Can
 - California State University
- Frank A. Carbone III
 - Florida State University
- Kelli E. Carnecki
 - Michigan State University
- Yoli G. Casas
 - University of Colorado
- Raymond. A. Chitwood
 - University of Texas-San Antonio
- Tranecia Clarke
 - University of Florida
- Sonya Denise Coaxum
 - Meharry Medical College
- Louis Costa, Jr.
 - Philadelphia College of Osteopathic Med.
- Mark Steven Crago
 - Unif. Services Univ. of the Health Sciences
- Jason W. Daniels
 - University of California-Davis
- David M. Devilbiss
 - Allegheny University
- Jeff Dickson
 - East Tennessee State University
- Dawnelle Diedrich
 - University of Texas
- J. Victoria Duran
 - Dickinson College
- Cynthia Dziwogo
 - Cheyney University
- Deji Ann Edwards
 - University of Nebraska
- Lawrence Elikan
 - University of Texas-Arlington
- Geoffrey G. Emerson
 - Yale University
- Ellen Marie Evans
 - University of Georgia
- Jenifer Evans
 - University of Florida
- Kayla Fass
 - Southwest Texas State University
- Marcelo Febo
 - University of Puerto Rico
- Dan Fleisher
 - Allegheny University
- Ellen V. Freund
 - Stanford University
- Michael Glogauer
 - University of Toronto
- Nicole C. Goldenstein
 - Creighton University
- Frederick Gregory
 - Morehouse College
- Lisa Griffin
 - University of Western Ontario
- Zhijun Guo
 - University of Southern California
- Michael K. Hansen
 - University of Tennessee-Memphis
- Carol Haverty
 - Princeton University
- Dongmei Wang
 - Jewish Hospital in St. Louis
- Suante Winberg
 - Uppsala University
- Mimura Yoshikazu
 - University of Tokyo
- Mary Kristina Henzel
 - University of Louisville
- Todd Herron
 - University of Missouri
- Brad Hodgkinson
 - University of Texas
- Shunda Rene Irons
 - University of Missouri-Columbia
- Tonya Lyn Jacobs
 - University of Hartford
- Michael Gregory Janech
 - University of South Carolina-Charleston
- Rebecca L. Jaworski
 - Miami University
- Mark S. Jorgensen
 - University of Wisconsin-Madison
- Chih-Ching Kao
 - University of Pennsylvania
- Steven P. Keller
 - Massachusetts Institute of Technology
- Joan Lau
 - University of Cincinnati
- Jeffrey J. Legos
 - Temple University
- Deborah Marie Lenda
 - West Virginia University
- Helene Levrey
 - University of Minnesota
- Jinhong Li
 - Georgetown University
- Mei Liang
 - University of Cincinnati
- Mark Lipsett
 - Simon Fraser University
- Robin C. Looft-Wilson
 - University of Iowa
- Johnalyn D. Lyles
 - University of Maryland-Baltimore
- Clara E. Magyar
 - University of South Carolina
- Devon Suzanne Martin
 - Arizona State University
- Francisco Javier Martinez
 - State University of New York, Stony Brook
Membership

Paul J. Matheson
University of Louisville

Tamara Mau
University of Alaska

John M. Mayer
Syracuse University

Laryssa L. McCloud
Medical College of Georgia

Patrick McConnell
University of Nebraska

Stephen E. Mercer
University of Texas-Arlington

Tracy L. Merkel
Southwest Texas State University

Korinne N. Meyer
University of Colorado

Silvana S. Meyrelles
University of Iowa

Christopher K. Migliore
Southern Illinois University

Eric A. Mokelke
University of Colorado-Boulder

Kevin D. Monahan
University of Colorado

Mahealani Monteilh-Zoller
University of Hawaii

David Montgomery
University of Illinois

Victoria Moore
University of Pennsylvania

Rey Dario Morales
California State University-Hayward

Delmore J. Moresette
Chicago Medical School

Kris Matthew Norenberg
Marquette University

Cynthia M. Odenweller
Northeastern Ohio Universities

George Ofori-Boadu
Hampton University

Luc M. Oke
Howard University

Marvin H. O’Neal
State University of New York, Stony Brook

Michel Pare
University of Montreal

Jason Pass
East Tennessee State University

Brian S. Pavey
University of Texas-Houston

Jian Feng Peng
University of Florida

Jing Qian
Baylor College of Medicine

Ross Quarry
University of North Texas

Roberto Quintana
University of New Mexico

Jayne Stewart Reuben
Florida A&M University

Kathleen T. Rousche
Pennsylvania State University

Michael James Ryan
University at Buffalo

Farideh Sabeh
Loyola University

Byran Auston Sauls
West Virginia University

Ayman I. Sayegh
Washington State University

Alan Schalscha
University of Northern Texas

Timothy J. Seipel
University of Colorado

Matthew R. Shipman
Oregon State University

Richard Lee Smith
University of Texas-Arlington

Scott Alan Smith
University of Texas

Zhilin Song
Chicago Medical School

Sabrina Stanley
Michigan State University

Ruth-Joy Stephenson
Howard University

Gina M. Story
Northeastern Ohio Universities

Natalie D. Strube
University of North Dakota

Christopher J. Sullivan
University of Arizona

Margarita Teran-Garcia
University of Texas-Austin

Kary Ellen Thompson
University of Arizona

George D. Thorne
University of Cincinnati

Matthew A. Todaro
Michigan State University

Veronica A. L. Toppin
Howard University

Haiyan Tong
University of Florida

Binh Tran
University of Iowa

Nathan Andrew Trueblood
University of California-Davis

Peter Van der Velde
University of Calgary

Xiaohong Wang
Pennsylvania State University

David S. Weber
Medical College of Wisconsin

Kira L. Wennstrom
University of Texas-Austin

Michael B. Williams
University of North Texas

Teresa M. Wilson
University of Colorado

Rania Zaarour
Yale University

Ted W. Zderic
University of Texas

Elizabeth A. Zeisloft
Pennsylvania State University

Jianyi Zhang
University of Tennessee-Memphis

Li Zhong
Wayne State University

John Zubek
Michigan State University

Approved Affiliate Members (3)

Suzanne R. Morgan
Rhone-Poulenc Rorer

Mercy Elgbe
Houston, Texas

Gary Kovnat
Mission College, CA
Announcements

Request for Proposals: A Veterinary Internship/PhD Fellowship in Animal Welfare

The William and Charlotte Parks Foundation invites applications for:
a) a one year internship in animal welfare for final year veterinary students or veterinary graduates at United States institutions; or
b) a PhD Fellowship for students already enrolled in a PhD program at an accredited institution of higher learning in the US.

The successful candidate will receive a grant of $30,000. For veterinary interns, $18,000 is identified for stipend and the remainder would be available for institutional and other expenses related to the proposed project. For PhD candidates, the award is meant to be a multi-year award providing three years stipendiary support (up to a maximum of $24,000 for the three years) with the balance of up to $6,000 being available for the costs of the research project and relevant institutional expenses.

Applications and information can be obtained from The William & Charlotte Parks Foundation for Animal Welfare, c/o Dr. Barbara Orlans, 7106 Laverock Lane, Bethesda, MD 20817. Deadline for applications is December 1, 1998.

Call for Nominations: The 2000 Henry Pickering Bowditch Lecture

The annual Bowditch Lecture honors the first President of the American Physiological Society, Henry Pickering Bowditch.

The Lecturer is selected by the President with the consent of Council from among the regular members who have achieved outstanding work and are under 40 years of age at the time of presentation. The award is for original and outstanding accomplishments in the field of physiology. The award conveys an honorarium of $2,500 plus travel and per diem expenses to attend the spring meeting, and the recipient is invited to submit a manuscript for publication in one of the Society’s journals.

Nominations should be accompanied by letters from two nominators describing the importance of the candidate’s work, a brief sketch of the nominee’s professional history, papers or manuscripts that substantiate the excellence of the candidate, and a curriculum vitae.

Nominations should be submitted by October 1 to: The APS Bowditch Lecture Award, 9650 Rockville Pike, Bethesda, MD 20814-3991.

Call for Nominations: The 2000 Walter B. Cannon Memorial Lecture

The Cannon Memorial Lecture honors Walter B. Cannon, President of the Society from 1913-1916 and one of the century’s most distinguished physiologists. The plenary lecture is presented annually by a distinguished physiological scientist, domestic or foreign, at the spring meeting on a subject that addresses some aspect of the concept of homeostasis as enunciated in Cannon’s classic work, The Wisdom of the Body. The lecture, sponsored by the Grass Foundation, is selected by the APS President-elect with the consent of Council.

The recipient receives an honorarium of $4,000 plus travel and per diem expenses and is invited to submit a manuscript for consideration of publication in one of the Society’s journals.

Nominations for the Cannon Lecture Award should be documented to demonstrate the candidate’s contributions to physiology. A curriculum vitae should accompany the letter of support describing the nominee’s achievements. Submit nominations by October 1 to: The APS Cannon Lecture Award, 9650 Rockville Pike, Bethesda, MD 20814-3991.

Equipment Exchange

Quinton Rat Exercise Treadmill

I am looking to purchase a second-hand Quinton rat exercise treadmill. If there is a redundant treadmill stored away in your Department perhaps I can help clear some space. I will cover all costs of shipping.

Please contact Gerard Davis, Department of Physiology, University of Otago, PO Box 913, Dunedin, New Zealand (Tel: 64-3-479-7292; fax: 64-3-479-7323; e-mail: gerard.davis@stonebow.otago.ac.nz).
The third annual meeting of the Iowa Physiological Society (IPS) was held on April 24th and 25th at North Iowa Area Community College (NIACC) in Mason City, Iowa. The meeting was held in conjunction with the larger Iowa Academy of Science (IAS) Meeting. The IPS scientific sessions were held together with the physiology section of the IAS. This joint meeting has been beneficial to both groups in bringing together more Iowa physiologists than would ordinarily assemble at a single gathering. Research papers and papers on physiology teaching from throughout the state were presented in slide and poster formats. Topics ranged from an analysis of baroreceptor neural pathways in mice to ventilation of walleye fingerlings during transportation, as well as papers on computer-aided physiology instruction. There were several opportunities for poster viewing and meeting with presenters. The IAS sponsored a poster session on Friday afternoon during which IPS posters were displayed and manned. Following this session, the posters were moved to the site of our Saturday IPS scientific sessions.

Poster viewing took place before the morning slide presentations, during the luncheon buffet, and then again in a more formal poster discussion session in the afternoon following the keynote lecture. The “luncheon buffet,” hosted by the IPS, has become a traditional feature of the meetings and is free to all presenters, friends, IPS members, IAS physiology section members, and the IAS board members. This luncheon has become quite a popular affair, during which participants meet informally and share ideas and information against the backdrop of the posters.

Following the luncheon, Gerald DiBona delivered the American Physiological Society Keynote Lecture, entitled “Neural control of renal function.” His presentation was very well received, generating such comments as “great science,” “very clear,” and “wonderfully presented.” The IPS thanks the APS for sponsoring this talk.

During the afternoon poster discussion session, each presenter spent 10 minutes or so discussing his or her poster and answering questions from the group. Those present then moved to the next poster and the process was repeated. This is the first time the poster discussion format has been tried, and preliminary reports are that it went well and should be repeated at next year’s meeting. Before the morning slide presentations, the business meeting of the physiology section of the IAS was held. Following the morning slide presentations, the business meeting of the Iowa Physiological Society was held at which committee reports were heard and the new IPS president-elect was elected. Russell Rulon, PhD (Department of Biology, Luther College, Decorah, Iowa 52101-1045) is the new President of the Iowa Physiological Society. His e-mail address is rulonrus@luther.edu. The newly elected President-elect is Luke H. Mortensen, PhD (Physiology/Pharmacology, University of Osteopathic Medicine, Des Moines, Iowa 50312). His e-mail address is lmortens@uomhs.edu.

Complete details of this meeting are available at our website http://www.faseb.org/aps/iowa.htm.

Don Stratton
Past President
Iowa Physiological Society
donald.stratton@drake.edu
APS Teaching Career Enhancement Awards

Statement of Purpose:
The APS Teaching Career Enhancement Awards are designed to enhance the career potential of regular members. The awards will provide up to $4,000 to allow individuals to develop innovative and potentially widely applicable programs for teaching and learning physiology. The awards can be used to support short-term visits to other schools to consult with experts who can assist with the development project or attendance at special courses devoted to methodologies appropriate for the educational development project.

Application Procedure:
Candidates who are regular members in good standing may submit an application form including the following: 1) a two-page description of the proposed project, including the aim, the educational problem that the project is designed to ameliorate, identification of the innovative aspects, a plan to evaluate the educational outcomes, and the kinds and sources of expertise needed by the applicant to carry out the project; 2) an anticipated budget with justification for requested funds; 3) a letter of support from the applicant’s department chair or other appropriate individual; 4) letters of agreement from individual or departmental hosts of schools to be visited; 5) description or outline of courses to be attended; and 6) a brief curriculum vitae focused on activities and achievements related to education.

Deadlines and Contact Information:
Deadlines: April 15 and October 15. Successful applicants are expected to report, in print or at a physiology conference, a description of the project and its evaluation. Awardees are encouraged to submit such reports for publication in Advances in Physiology Education. For an application form, please contact Martin Frank, Executive Director, American Physiological Society, 9650 Rockville Pike, Bethesda, MD 20814-3991. Tel: 301-530-7118; fax: 301-571-8305; e-mail: awards@aps.faseb.org; Internet: http://www.faseb.org/aps/awards.htm.
Conferences

1998 APS Conference
Endothelial Regulation of Vascular Tone: Molecular to Integrative Physiology
September 16–19, 1998 • Radisson Riverfront Hotel • Augusta, GA

ORGANIZER
David M. Pollock, Medical College of Georgia

ORGANIZING COMMITTEE
Jennifer S. Pollock, Medical College of Georgia
John D. Catravas, Medical College of Georgia
L. Gabriel Navar, Tulane University
Harris J. Granger, Texas A&M University

WEDNESDAY, September 16, 1998
DISCOVERY OF ENDOTHELIAL-DERIVED FACTORS
Nitric Oxide and G-cyclase Activation
Ferid Murad, University of Texas at Houston
Endothelins
Masashi Yanagisawa, Howard Hughes Institute
Arachidonic Acid Metabolites
William B. Campbell, Medical College of Wisconsin
Endothelium-Derived Hyperpolarizing Factor
Rudi Busse, J. W. Goethe University, Germany
Mechanisms for Sustained Release of Vasodilators by Endothelium
Bradford C. Berk, University of Washington

THURSDAY, September 17, 1998
BASIC SCIENCE STATE OF THE ART
Role of Nitric Oxide in Vascular Disease
Louis J. Ignarro, University of California at Los Angeles

ACTIVATION AND SIGNAL TRANSDUCTION MECHANISMS
Effects of Acute and Chronic Shear Stress on Endothelial Function
Gabor Kaley, New York Medical College
Flow-Dependent Responses to the Vascular Endothelium
John A. Frangos, University of California at San Diego
Shear Stress Effects in the Glomerulus
Barbara J. Ballerman, Johns Hopkins University
Metabolic Control of Endothelial Cell Function
Richard J. Paul, University of Cincinnati
Protein-Protein Interaction in Endothelial Cell Caveolae
Richard C. Venema, Medical College of Georgia
Cell-Cell Communication
Brian Duling, University of Virginia

MOLECULAR AND GENETIC REGULATION
Transgenic Mice as Models for Hypertension
Edward G. Shesely, Henry Ford Hospital
Molecular Regulation of NOS-III
David G. Harrison, Emory University
Genetic Regulation of NOS II Induction
Ulrich Fürstermann, Gütenberg University, Germany
Special Lecture: NO Synthase Isoforms
Jennifer S. Pollock, Medical College of Georgia

FRIDAY, September 18, 1998
INTERACTION OF ENDOTHELIAL FACTORS
Relationship Between Nitric Acid and EDHF
Richard A. Cohen, Boston University
NO and Cytochrome P450: Vasodilation Independent of cGMP
Richard J. Roman, Medical College of Wisconsin

Endothelial Regulation of Arterial Pressure
Joey P. Granger, University of Mississippi
Kinin Regulation of Nitric Oxide Production
Thomas H. Hintze, New York Medical College

PULMONARY CIRCULATION
Regulation of Endothelium-Bound Angiotensin Converting Enzyme
John D. Catravas, Medical College of Georgia
Pulmonary Circulation
Philip J. Kadowitz, Tulane University
Role of ET in the Developing Lung
Steven H. Abman, University of Colorado

RENA L CIRCULATION
Angiotensin-Nitric Oxide Interactions in the Kidney
L. Gabriel Navar, Tulane University
Mechanisms of Angiotensin and Prostaglandin Action in the Renal Microcirculation
William J. Arendshorst, University of North Carolina
Nitric Oxide in the Macula Densa and Afferent Arteriole
Christopher S. Wilcox, Georgetown University
Endothelin-Nitric Oxide Interactions in the Kidney
David M. Pollock, Medical College of Georgia
Special Lecture: Peptidases in the Vascular Endothelium
James W. Ryan, Medical College of Georgia

SATURDAY, September 19, 1998
CLINICAL SCIENCE STATE OF THE ART
Pivotal Role of Endothelium to Heart-Lung Transplantation
Sir Magdi Yacoub, Imperial College, London

CORONARY CIRCULATION
Endothelial Regulation in Cardiomyopathy
Leslie C. Fuchs, Medical College of Georgia
Estrogen Modulation of the Vascular Endothelium: Implications for Development of Coronary Artery Disease
Virginia M. Miller, Mayo Clinic
Effect of Exercise on Endothelial Function
M. Harold Laughlin, University of Missouri

ENDOTHELIUM AND DIABETES
Endothelial Dysfunction in Diabetes
Galen M. Pieper, Medical College of Wisconsin
Endothelial Regulation of the Renal Microcirculation in Diabetes
Pamela K. Carmines, University of Nebraska
Novel Therapeutic Approaches to the Treatment of Diabetes
Joan A. Keiser, Parke-Davis

RESPONSE TO INJURY
Endothelin in Vascular Disease
Terry J. Oppenorth, Abbott Laboratories
Endothelial Regulation of Angiogenesis
Harris J. Granger, Texas A&M University
Endothelial Cell Gene Expression in Response to Injury
Mary E. Gerritsen, Bayer
TGF-β in Fibrotic Disease
Wayne A. Border, University of Utah
Activation of Endothelial Stress Genes
Bruce R. Pitt, University of Pittsburgh
The paraventricular nucleus of the hypothalamus (PVN) serves as the crossroads of integrative physiology. This discrete hypothalamic area receives neural, humoral, and endocrine input regarding the state of the cardiovascular, endocrine, and immune systems, as well as fluid and electrolyte and energy balance. Integration of afferent inputs results in efferent neural or hormonal regulation of specific organ systems. This conference will bring together scientists who study different physiological systems and who use a variety of technical approaches ranging from molecular biology to whole animal physiology. The goal will be to understand how the PVN integrates afferent information, controls specific physiological functions, and coordinates interactions among organ systems.
A Very...Very...Smart Way to invest $49.50

Access all these APS journals online for only $49.50 a year.

- American Journal of Physiology (consolidated) www.ajpcon.org
- AJP: Heart and Circulatory Physiology www.ajpheart.org
- AJP: Renal Physiology www.ajprenal.org
- AJP: Endocrinology and Metabolism www.ajpendo.org
- AJP: Gastrointestinal and Liver Physiology www.ajpgi.org
- AJP: Cell Physiology www.ajpcell.org
- AJP: Regulatory, Integrative and Comparative Physiology www.ajpregu.org
- AJP: Lung Cellular and Molecular Physiology www.ajplung.org
- Advances in Physiology Education www.ajpadvan.org
- Journal of Applied Physiology www.jap.org
- Journal of Neurophysiology www.jn.org
- The Physiologist www.faseb.org/aps/phys.htm
- News in Physiological Sciences (Coming real soon)
- Physiological Reviews (Coming real soon)

You can do this today...by just sending us this form

FOR APS MEMBERS ONLY

☐ YES, I want to purchase online access to ALL APS journals for $49.50 a year. I understand that when my payment and order form are received by APS, my online access will be activated for the period of January - December 1998.

Member ID# ______________________ (use your 6-digit keyline # -- or contact the APS Membership Dept. for assistance.)
Name ____________________________
Address ___________________________
City/State/Province__________________ Zip or Postal Code____________________
Country____________________________ E-mail ____________________________
Phone ____________________________ Fax ________________________________

☐ Check enclosed. U.S. currency drawn on U.S. bank. Make check payable to: The American Physiological Society
To expedite, charge and fax your credit card order to 301-571-8313

☐ VISA ☐ MasterCard Card # ________________ Exp __________
☐ Amex

Signature __________________________ Date __________

*Maryland residents add 5% sales tax or provide tax exempt ID # __________. Canadian residents add 7% G.S.T.

Questions? Call 301/530-7164 or E-mail: subscrip@aps.faseb.org
Mail your order to: The American Physiological Society, Subscription Department, 9650 Rockville Pike, Bethesda, Maryland 20814-3991 (USA)
Three more societies joined FASEB in May, bringing its total membership to 17 societies representing over 56,000 scientists.

At its May 5 meeting, the FASEB Board approved an application for full membership from the American Society for Clinical Investigation (ASCI) and applications for associate membership from the Society for the Study of Reproduction and the Teratology Society. This brings the number of full member societies to 12 and the number of associate member societies to 5. FASEB scientists conduct biomedical and biological research in university, corporate, and government laboratories across the country.

On May 1, 1998, the ASCI Council unanimously voted to join the Federation. The ASCI is one of North America’s premier organizations of physician-scientists and is comprised of 2,600 physician-scientists from all medical specialties. The ASCI is dedicated to the advancement of scientific research that pertains to the understanding and treatment of human diseases, and is committed to the mentoring of future generations of physician-scientists.

Members are elected to the ASCI in recognition of an outstanding record of scholarly achievement in biomedical research accomplished relatively early in a scientific career. In the course of its 90 year history, more than 120 members of the ASCI have been elected to the National Academy of Sciences, 26 won the Lasker Award, and 14 won the Nobel Prize. One of the ASCI’s major scholarly functions is publication of the Journal of Clinical Investigation.

Announcing the affiliation with FASEB, ASCI President Ajit Varki noted that the ASCI had just concluded an internal dialogue resulting in a decision to become involved in advocacy for biomedical research. “To do this in co-operation with the member societies of FASEB ensures that the voice of the ASCI, with its unique perspective from established physician-scientists, will be heard clearly and effectively, while meshing smoothly with that of other biomedical scientists with whom we have so much in common,” Varki said.

The Society for the Study of Reproduction and the Teratology Society are the newest associate members of the Federation, bringing the number of societies in this category to five. Associate membership provides smaller societies the opportunity to participate in FASEB public affairs activities and to advise FASEB on the particular concerns of investigators in highly specialized areas or in newly developing disciplines.

The Society for the Study of Reproduction (SSR) was founded in 1967, to promote the study of reproduction by fostering interdisciplinary communication among scientists, holding conferences, and publishing meritorious studies. Its members are basic scientists, medical and veterinary physicians, trainees in graduate and professional schools, and others engaged in research, education, and training in fields relevant to reproductive biology. Members are affiliated with college and universities, medical and veterinary schools, medical centers, research institutes, government agencies, and industry in some forty-seven countries.

The 1,529 members of the Society for the Study of Reproduction perform research on important problems in human and animal reproduction relating to medicine, agriculture, and basic biology. These include infertility, contraception, pregnancy-related disorders, diseases of the reproductive tract, reproductive toxicology, lactation, reproduction and conservation of endangered species, basic mechanisms controlling the function of organs involved in reproduction, and mechanisms of cell differentiation and development. Biology of Reproduction, the official journal of the SSR, publishes original, peer-refereed scientific papers and is ranked as the top journal in the field of reproductive science.

The Teratology Society was established in 1960 to foster exchange of information relating to congenital (birth) defects including their nature, cause, mechanism and prevention. The society has over 750 members drawn from a wide range of scientific fields including pediatrics, anatomy, epidemiology, pharmacology and industrial toxicology, developmental biology, obstetrics, pathology, genetics and dentistry. Teratology: The Journal of Abnormal Development is the official journal of the society.

The mission of the Teratology Society is to promote research and the exchange of ideas and research results that reveal the causes, improve the diagnosis and treatment, and prevent the occurrence of abnormal development and birth defects; to communicate that information to physicians, public health officials, concerned health advocacy and lay groups and other interested parties that promote the elimination of birth defects when possible and amelioration of them when they occur; and to provide education and training on the causes, mechanisms, treatment and prevention of birth defects.
As Congress moved closer to its Memorial Day recess, there was legislative activity on several issues important to NIH funding.

Each year’s budget cycle has its own particular quirks. The stumbling block thus far in the FY 1999 cycle has been whether to keep pursuing fiscal austerity when the budget deficit seems to be disappearing more quickly than expected. The other special feature this year has been the possibility that tobacco legislation might provide additional resources for NIH.

Federal spending each year is determined by a two-stage process: First Congress passes a budget resolution outlining what revenues are anticipated and how much the government should spend overall in broad categories such as “health,” “education,” and “defense.” The action then transfers to the House and Senate Appropriations Committees, which draft 13 appropriations bills setting specific spending levels for each government agency.

For more than a decade, concern over reducing the deficit produced a series of plans to balance the budget. The latest such plan was adopted last year. This year, due to preliminary reports that we may actually see a surplus, there has been some confusion in the ranks. Some in Washington want to spend the all or part of the surplus, and some would like to stick with this year’s planned spending limitations, or even exceed them. There are also differences of opinion over where any new spending should go, although biomedical research funding has been at or near the top of most priority lists.

The statutory May 15 deadline for completing action on the budget resolution passed without approval of a final plan. The Senate had passed its version of the budget, which assumed an 11 percent increase in NIH funding. However, NIH’s gain came at the expense of other health programs. Using the Senate budget plan, the Senate Appropriations Committee mapped out how much money would be available to its 13 subcommittees. The results were grim, with funding levels for the Labor-HHS-Education Subcommittee (which funds NIH) and the VA-HUD Subcommittee (which funds NSF, the VA, and NASA) below the levels contained in the President’s budget request.

As of May 15, the House Budget Committee had not drafted its plan. Chairman John Kasich (R-OH) made clear his intention to go cut spending below the spending limits set in last year’s budget agreement. However, he faced opposition from both Republicans and Democrats to this draconian approach. Despite his overall fiscal toughness, a leaked document containing Kasich’s “short list” of spending priorities included an 8 percent funding increase for NIH even as most other government programs were to be frozen at this year’s levels or even cut.

Kasich was expected to offer instead a simplified budget plan calling for a total of $100 billion in cuts but without specifying where they would be made. However, if that effort stalled, the House might instead pass a special resolution that permitting the House Appropriations Committee to proceed with its work using the FY 1999 budget caps contained in last year’s plan even in the absence of a budget resolution.

The problem remains that if Congress is forced to operate under the current “official” budget assumptions it will not have enough funds for Congress to produce politically viable appropriations bills for FY 1999 given the rising expectations that the budget will soon be balanced or in surplus. If this proves to be the case, Congress may delay action on the major spending bills until new budget projections are released later this summer in the hope that a better fiscal outlook will make it possible to revise the FY 1999 spending levels currently in effect.

The other important event was the possibility of tobacco legislation as a federal addendum to the settlement reached last year by the state attorneys general and the tobacco industry. The House has so far balked at producing a bill, but Senate legislation sponsored by Sen. John McCain (R-AZ) was scheduled to go to Senate floor shortly before the Memorial Day recess. The McCain bill was expected to set aside $2.5 billion for each of the next 10 years from funds generated for NIH research. However, last-minute concerns included whether an attempt would be made to restrict the money to tobacco-related illnesses, and whether there would be language ensuring that the tobacco monies could be used only to supplement and not to replace the regular NIH appropriation.

Have you checked out the APS Public Affairs Web Page lately?

Point your web browser to http://www.faseb.org/aps/pahome.htm and check out the latest version. We look forward to your feedback and questions! Just send an e-mail to paffair@aps.faseb.org.
HSUS to Ask for New USDA Pain Reports

Andrew Rowan of the Humane Society of the United States told a national meeting on animal care issues that the HSUS will seek to eliminate pain and distress in laboratory animals by the year 2020. The Applied Research Ethics National Association (ARENA) and Public Responsibility in Medicine and Research (PRIM&R) hold back-to-back conferences each spring to explore issues related to the humane care of animals in research.

The goal of the HSUS campaign can be seen as an effort to implement the third of the “three R’s” — refinement, which is already accepted public policy through the Animal Welfare Act. However, there is the critical question, how will the goal be achieved.

At the ARENA and PRIM&R meetings Rowan also announced his intention to seek a revision of USDA’s pain and distress reporting categories. This proposal, which has been circulating for two years, poses a number of serious questions. A survey on the proposal has been distributed to representatives of 46 institutions who attended the conference.

The current reporting system requires institutions to report how many animals in each regulated species were used in potentially painful procedures. The categories are no pain or distress, pain or distress that was relieved by drugs, or unrelieved pain or distress.

APS Animal Care and Experimentation Committee Chairman C. Terrance Hawk PhD, DVM, participated two years ago in a task force convened by Rowan, who was then the head of the Tufts Center for Animals and Public Policy. Given the generalized dissatisfaction within both the research and the animal activist communities with the existing reporting scheme, Rowan sought to define a new scheme that all would support. However, even at the time, Hawk expressed reservations about Rowan’s proposal to place more emphasis on distress and to revise the categories, adding a fourth.

The proposed categories are: little or no pain or distress without pain relieving drugs, little or no pain or distress with the use of pain relieving drugs, moderate pain or distress even if appropriate drugs were used during at least part of the procedure, and severe pain or distress even if appropriate drugs were used in at least part of the procedure.

The problem with this approach is that it would make the reporting process more cumbersome without improving the accuracy of the data. Trying to classify an animal’s experience of pain in response to a procedure is largely subjective, and animal care and use committees at different institutions make different judgments about categorizing them. These legitimate differences in judgment would exist even if the same person were performing the same procedure in each case. This has to do with the autonomy that is granted to animal care committees and is not something to be “fixed” by adding new reporting categories or mandating that procedures be assigned to certain categories.

APS, FASEB, Seek More Fair Animal Cost Rules

As part of an ongoing effort to ensure equitable treatment of animal research costs, APS is playing an active role in a FASEB-led effort to revise the federal Office of Management and Budget’s (OMB) interpretation of Circular A-21. APS Public Affairs Committee Chairman J.R. Haywood was asked in March to chair a special subcommittee of FASEB’s Public Affairs Advisory Committee (PAAC) on the animal research facilities cost issue. Haywood’s predecessor, Eric Feigl, had previously spearheaded FASEB efforts on this issue.

The Subcommittee’s first task was to evaluate a proposal by an ad hoc NIH task force that OMB should allow certain animal research facility costs to be included in institutional Facilities and Administrative (indirect) costs.

FASEB has long taken the position that animal research costs should be treated in the same way as costs for comparable kinds of research. Specifically, the FASEB position states that purchase, daily husbandry, and research procedures should be direct costs, while costs related to complying with federal regulations and operating the animal research facility should be treated as overhead. The latter should be allocated to the institution’s Facilities and Administrative (F&A) costs.

In recent years, OMB has sought to keep indirect cost rates down by forcing institutions to charge all animal research costs directly to investigators through per diem rates. OMB’s rationale was that animal facilities should be treated as “specialized research facilities,” a category that also includes wind tunnels and nuclear reactors. Although it is not yet uniformly in force, this policy is widely seen as likely to cause serious disruptions to some kinds of research as per diem rates skyrocket.

The APS and FASEB position asserts that animal research facilities are comparable not to nuclear reactors but to other biomedical science laboratories, and costs should be split between direct and indirect costs in a similar fashion.

Consequently, the FASEB subcommittee concluded that the task force’s proposal did not go far enough to solve the problem.
Web Surfing: Don’t Get Pulled in to an Addiction

You’re sitting at your desk in between meetings, with a few minutes to spare. What are you thinking about right now? An upcoming conference, a fascinating article from the latest edition of The Physiologist, or maybe checking out what’s new on the Web. The computer is right there, after all, ready to give you access to a world of information, entertainment and distraction. You’ve used the Internet and World Wide Web to buy a car, purchase discount airfare, plan a vacation, and check out the latest albums. But how much time are you spending surfing the Web, and how much of that is productive time?

Recently, a new form of addictive behavior disorder has been described--Internet Addiction. Much in the same way that others become addicted to drugs, alcohol, or gambling, it is now being suggested that some individuals may be susceptible to compulsive Web surfing.

With the popularity and wide-spread access to the Internet and the World Wide Web, it’s a topic worth considering. For the purposes of this article, I consulted several Web sites looking for criteria for a definition of Internet Addiction. Not an easy task. As a relatively new topic of study, there wasn’t much empirical data available. However, one item I found did seem to serve as an effective diagnostic tool for the assessment of one’s degree of compulsion with the Internet. The following questionnaire was found at the Web site for The Center for Online Addiction (COLA), an on-line counseling, consultation, and training institute for Internet addiction. http://netaddiction.com/articles/newdisorder.html

1. Do you feel preoccupied with the Internet (think about previous on-line activity or anticipate next on-line session)?
2. Do you feel the need to use the Internet with increasing amounts of time in order to achieve satisfaction?
3. Have you repeatedly made unsuccessful efforts to control, cut back, or stop Internet use?
4. Do you feel restless, moody, depressed, or irritable when attempting to cut down or stop Internet use?
5. Do you stay on-line longer than originally intended?
6. Have you jeopardized or risked the loss of significant relationship, job, educational or career opportunity because of the Internet?
7. Have you lied to family members, therapist, or others to conceal the extent of involvement with the Internet?
8. Do you use the Internet as a way of escaping from problems or of relieving a dysphoric mood (e.g., feelings of helplessness, guilt, anxiety, depression)?

If you answered “yes” to five or more of the criteria, than you may fit COLA’s classification of an addicted Internet user. It should be noted that the cut off score of “five” was consistent with the number of criteria used for Pathological Gambling. Also, the term Internet referred to all types of Online activity. (The Web, Chat Rooms, Bulletin Boards, Email, etc.)

If you would like more information on Internet Addiction, please see the following web sites.
- Psychological Internet Addiction Study, which is designed to test the stereotype of addicted individuals. http://147.197.152.160/netquest/ALL-VER6.html and
- Clicking the Night Away, which is a study to find out what users in Malta are utilizing the Internet for and what subsequent gratifications are obtained from such use. http://oberonlabs.com/dabela/

As always, if you have a question, or suggestion that you would like to see addressed in this column, please submit it via email to webmaster@aps.faseb.org. Happy Surfing!

Announcements

Charles E. Culpeper Foundation Scholarships in Medical Science

The Charles E. Culpeper Foundation is currently accepting applications for its 1999 Scholarships in Medical Science Program designed to support the career development of academic physicians.

Up to four awards of $100,000 per year for three years will be made to US medical schools on behalf of the candidates who are US citizens or aliens who have been granted permanent US residence (proof required), have received their MD degree from a US. medical school in 1990 or later (except by extraordinary circumstances), and are judged worthy of support by virtue of the quality of their research proposals. All scientific research relevant to human health is eligible for consideration. No institution may nominate more than one candidate. In selecting awardees, emphasis will be on identifying young physicians with clear potential for making substantial contributions to science as academic physicians. Since January 1988, 33 physicians have been selected as Charles E. Culpeper Foundation Medical Scholars.

Deadline for applications is August 14, 1998. Awards will be announced in January 1999, for activation on or about July 1, 1999. Application forms and instructions may be obtained on the Web at www.culpeper.org or by contacting the Charles E. Culpeper Foundation at Financial Centre, 695 East Main Street, Stamford, CT 069041-2155 (telephone, 203-975-1240; fax, 203-975-1847).
Three new Local Outreach Teams (LOTs) have been named by Council to conduct professional development workshops for middle and high school teachers within their local communities. The new LOTs and their team leaders are: University of Arkansas for Medical Sciences in Little Rock, led by Michael L. Jennings; University of North Carolina in Chapel Hill, led by Marianne L. Meeker; and, Texas Tech University Health Sciences Center in Lubbock, led by Lorenz O. Lutherer.

The workshops enable teachers to explore hands-on, inquiry-based physiological activities in neural and exercise physiology. Each LOT is chaired by an APS physiologist who works with other physiologists, and local science teachers and science education administrators to present these activities to their middle and high school colleagues.

The 1998-99 LOTs join a network of 19 APS outreach teams in 12 states that have delivered these physiology training materials to more than 400 science teachers nationwide over the past three years.

Members from each new LOT will attend an Outreach Institute, June 25-28 in Warrenton, VA, to learn the content and pedagogy within the workshop modules. Past LOT members will model for new members the use of the “Neural Networks” and “Physiology of Fitness” activities. The “Neural Networks” workshop, which is directed toward middle school teachers, explores anatomy and physiology of reflexes and reactions. The “Physiology of Fitness” workshop for high school teachers, focuses on exercise physiology related to cardiovascular and respiratory systems.

Each LOT will conduct a one- to two-day workshop for 20-30 local science teachers in the fall of 1998. There will be shorter follow-up sessions in the winter and spring which may include sharing strategies for using the workshop materials in class; Internet exploration, and/or tours of the research facilities where the APS members work.

For information on the new LOTs or on establishing an LOT in your community, contact Marsha Lakes Matyas, Education Officer, American Physiological Society, 9650 Rockville Pike, Bethesda, MD 20814-3991. Tel: 301-530-7132; fax: 301-571-8305; e-mail: educatio@aps.faseb.org, or look at the APS Web page at: http://www.faseb.org/aps/education/lot.htm.

Volunteer! Become A Contact for a Summer Research Teacher

The APS Education Office invites you to volunteer to serve as a contact and/or research host for a middle or high school science teacher, or a 2- or 4-year college faculty member who is interested in doing physiology research in a laboratory during the summer of 1999.

APS contact persons are needed for three programs, Frontiers in Physiology, for middle and high school teachers; Physiology Insights, for faculty members at 2- and 4-year colleges who teach physiology, but whose background may not be in physiology; and, Explorations in Biomedicine, a program specifically for teachers in Montana who teach primarily Native American students. While participants in the Frontiers and Physiology Insights programs work with researchers within 75 miles of their home communities, Explorations teachers may work with researchers anywhere in the United States.

Contact persons provide a first point of contact for teachers or college faculty interested in participating in one of the APS Summer Science Research Programs. By talking with teachers or local college faculty, the contact can determine their research interests and backgrounds, and guide them to other APS members who are interested and able to serve as host researchers. Of course, contact persons often decide to host teachers in their own laboratories.

Applications for the 1999 Summer Research Programs will be distributed in September 1998. Queries from teachers and faculty members can be expected from September through December 1998. The deadline for 1999 applications will be January 5, 1999.

To check if you’re on the current list of APS contact persons, visit our Web site at: http://www.faseb.org/aps/educatn/98contac.htm. If you are interested in being a contact person and/or research host for our 1999 programs, or would like more information, please notify Marsha Lakes Matyas, Education Officer, American Physiological Society, 9650 Rockville Pike, Bethesda, MD 20814-3991. Tel: 301-530-7132; fax: 301-571-8305; email: educatio@aps.faseb.org. Please be sure to include your mailing address as well as your email address.
Position Wanted

Position Wanted. PhD in Physiology 1985. Cardiovascular-gastrointestinal physiologist, with experience in lipid mediator biochemistry and inflammation-transplantation biology. Significant track record of extramural funding. Seeks an academic/industrial position. Can bring full laboratory equipment and supplies. Postdoctoral experience and faculty position at Washington University School of Medicine at St. Louis. Teaching responsibilities are welcome. If interested, please e-mail mjmangino@hotmail.com or call pager 305-543-1843 and leave your phone number.

Positions Available

Postdoctoral Position. Investigate signal transduction mechanisms involved in the regulation of intracellular Ca\(^{2+}\) concentration in arterial smooth muscle cells by vasoactive hormones. The project will utilize multiple experimental approaches involving fluorescence imaging, patch-clamp electrophysiology, and molecular and biochemical techniques. New, state-of-the-art facilities and a very congenial working atmosphere. Send cover letter, Curriculum Vitae, and three letters of reference to Kenneth L. Byron, PhD, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153.

Postdoctoral Position Available immediately to study ion channel mechanisms of cardiac arrhythmia, with focus on long QT syndrome and idiopathic ventricular fibrillation. Ph.D. in physiology or related field required. Background in patch-clamp electrophysiology and/or molecular biology experience desirable. Send curriculum vitae and names of three references to: Glenn E. Kirsch, PhD, MetroHealth Medical Center, Rammelkamp Building R327, 2500 MetroHealth Drive, Cleveland OH 44109-1998 (e-mail: gek3@po.cwru.edu; fax: 216-778-8282; telephone: 216-778-8968). MetroHealth is an affiliate of Case Western Reserve University.

Postdoctoral Position in Vascular Biology. The Department of Physiology at Jefferson Medical College, Thomas Jefferson University, offers a postdoctoral training program in physiology and pathophysiology of cardiovascular disorders. Current research areas for this position include mechanisms of myocardial ischemia-reperfusion injury, endothelial mediators in the regulation of endothelial cell function, nitric oxide physiology, neutrophil migration, and the role of adhesion molecules in the interaction of leukocytes and endothelial cells in circulatory disorders. Emphasis will be placed on cellular and molecular approaches to these problems. Candidates must be US citizens or hold permanent resident alien status. Interested candidates are invited to apply to Allan M. Lefer, PhD, Professor and Chairman, Department of Physiology, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107-6799. [EO/AAE]

Postdoctoral Fellow or Research Associate. There is an immediate opening for a postdoctoral fellow (or a research associate) in the Departments of Medicine (Renal Division) and Physiology under the supervision of Drs. Sands, Timmer, and Gunn. The position is funded by an NIH Program Project Grant entitled “Cellular and Molecular Biology of Renal Transport Processes: Project 2: The Structure and Functions of Urea Transporters.” The research emphasis will be on functional measurements of urea, water, and phosphate transport in isolated perfused kidney tubules and urea fluxes in cultured cells. The candidate will also be trained in molecular biological techniques including cell transfection and Western and Northern blotting so that mechanism(s) for functional changes can be explored at the protein and mRNA levels. Candidates with experience in isolated perfused tubule or micropuncture studies are strongly encouraged to apply, regardless of degree. Please contact Jeff Sands, MD, Emory University, Renal Division, WMRB Room 338, 1639 Pierce Drive, NE, Atlanta, GA (tel: 404-727-2435; fax: 404-727-3425; e-mail: jsands@emory.edu).

Chair of Physiology. The Medical College of Georgia invites applications and nominations for the position of Chair of the Department of Physiology and Endocrinology in the School of Medicine. The department has a distinguished history of academic and research achievement, and the new chair will have the opportunity and resources to adopt a leadership role in defining the future course and development of the department. The candidate must have a national reputation for excellence in scholarship, teaching, and research and have demonstrated expertise in guiding the independent research efforts of younger scientists. The candidate is expected to hold a PhD and/or MD degree with expertise in physiology or a closely related field. The department currently has 14 full-time faculty members, 12 graduate students, and 19 full-time staff members. Faculty members are actively engaged in diverse research programs and collaborative projects with other basic science and clinical departments. The faculty is responsible for teaching courses to medical, graduate, and allied health students. Interested candidates should send a curriculum vitae to Dr. Sylvia B. Smith, Chair of the Search Committee for the Chair of the Department of Physiology and Endocrinology, c/o Dean’s Office, School of Medicine, AA-152, Medical College of Georgia, Augusta, GA 30912-4750. The Medical College of Georgia is committed to diversity in its faculty and students. Women and minorities are encouraged to apply.
Positions Available

Postdoctoral Positions in Cardiovascular Research. Positions are available with a number of preceptors in areas of cardiovascular research that include molecular and cell biology: neuroendocrinology, pharmacology, physiology, and pathophysiology. Requirements include a PhD, MD, or DVM and US citizenship or permanent residence (NIH Training Grant). Interested candidates should contact Leonard Share (lshare@physio1.utmem.edu), Charles Lefler (cleffler@physio1.utmem.edu), or K. U. Malik (kmalik@physio1.utmem.edu) and/or send their curriculum vitae and three reference names to Leonard Share, PhD, Department of Physiology and Biophysics, 894 Union Avenue, University of Tennessee, Memphis, TN 38163. The University of Tennessee is an EEO/AA/Title VI/Title IX/Section 504/ADA/ADP employer.

Associate Research Scientist. (#39173). The University of Iowa College of Medicine, Department of Internal Medicine, Nephrology Division, is seeking an Associate Research Scientist to perform research in an area of membrane transport proteins. The person will identify and select the problems to be studied, develop an approach to them, conduct the measurements, interpret the data, and present the results. A person in this classification has the academic knowledge of a discipline that is generally associated with a doctoral degree or an equivalent combination of education and experience. In addition, the person will have demonstrated the ability to plan and execute a research study through some progressively responsible independent research work. Such a person will have submitted an application for funding that has been funded or has a reasonable chance of being funded. Obtaining outside funds for all or a portion of his/her salary will be an expectation. Considerable (3-5 years) experience with molecular methods used in studying the biology of membranes and/or membrane transport processes is required. Experience with molecular biology and molecular methods used in the biology of ion channels and/or membrane proteins is desirable. Please send resume and cover letter indicating #39173/Associate Research Scientist to Carol Webby, Human Resources, Internal Medicine, E-400 GH, 200 Hawkins Drive, Iowa City, IA 52242-1081. Women and minorities are strongly encouraged to apply. [EO/AAE]

Postdoctoral Position. To study the role of the sensory nerve Ca$^{2+}$ receptor (Bukoski et al. *Hypertension* 30: 1431-1439, 1997) in the regulation of vascular reactivity and blood pressure. A variety of projects ranging from delineation of the cannabinoid vasodilator transmitter pathway that mediates Ca$^{2+}$-induced dilation, to neuronal cell signaling pathways coupling the Ca$^{2+}$ receptor with transmitter release, to the use of the Ca$^{2+}$ receptor as a molecular target for novel antihypertensive drug development are ongoing in the laboratory. Applicants should have training in vascular or neuronal cell/molecular physiology and a eagerness to excel in a multidisciplinary environment. The University of Texas Medical Branch is the oldest biomedical research and healthcare facility in Texas and is located on Galveston Island, which is a major tourist destination that offers recreation opportunities unique to the Gulf Coast. Please send curriculum vitae and three letters of reference to: Richard D. Bukoski, Ph.D., Director: Section of Hypertension and Vascular Research, 8.104 Medical Research Building, University of Texas Medical Branch, Galveston, TX 77555-1065; fax: 409-747-1861; e-mail: rbukoski@utmb.edu. [EOE/AA]

Postdoctoral Fellowship. The Obesity and Diabetes Research Center of the University of Maryland School of Medicine has a postdoctoral position available in the areas of mechanisms of obesity, diabetes, and aging. NIH- and industry-funded projects include the early physiological/molecular development of diabetes and aging; metabolic, enzymatic, and insulin signaling alterations in calorie restriction and aging; prevention of diabetes and its complications, retinopathy, nephropathy, and dyslipidemia; pancreatic islet culture and transplant; and molecular aspects of diabetes and obesity. Doctorate in physiology, molecular or cell biology, or biochemistry with interest in integrating in vivo and in vitro studies required. Start date approximately July 1998. Send curriculum vitae; outline of research experience and interests; and names, addresses, and telephone numbers of three references to B. C. Hansen, Director, Obesity and Diabetes Research Center, Department of Physiology, University of Maryland, School of Medicine, 10 South Pine Street, #6-00 MSTF, Baltimore, MD 21201. Fax: 410-706-7450; e-mail: bc Hansen@aol.com.

Postdoctoral Position. A 2.5-year position is available to study the mechanisms of membrane targeting and second messenger pathways regulating renal sulfate transporters (Markovich et al., *Proc. Natl. Acad. Sci.*90: 8073-8077, 1993). Applicants must have good skills in molecular/cell biology and tissue culture experience, including site-directed mutagenesis, protein routing and targeting, immunofluorescence, and antibody production. Annual salary range is A$41,481-44,527. Please send a curriculum vitae, list of techniques, research interests, and names of two references to Daniel Markovich, PhD, Department of Physiology and Pharmacology, University of Queensland, Brisbane 4072, Australia (tel: +61-7-3365-1400; fax: +61-7-3365-1766; e-mail: danielm@plpk.uq.edu.au.)

Postdoctoral position. Available immediately at the Division of Nephrology, University of Texas Medical Branch, to study the function and regulation of P-glycoprotein (multidrug resistance transporter) in kidney cells. Recent PhDs in cell/molecular biology are encouraged to apply. NIH funding. Send curriculum vitae to: E. Bello-Reuss, PhD, University of Texas Medical Branch, 301 University Blvd., 4200 John Sealy Annex, Galveston, TX 77555-0562; e-mail: ebellore@utmb.edu.
Jin Hyuk Kim has accepted a position as Research Associate, University of Pittsburgh, Department of Neuroscience, Pittsburgh, PA. Previously, Kim was associated with the Hanyang University College of Medicine, Department of Physiology, Seoul, Korea.

Previously, Michael Kurz was a research scientist with Genedia Pharmaceuticals, San Diego, CA. Kurz is now a Clinical Information Scientist with Centocor, Inc., Medical Affairs, San Marcos, CA.

Peter W. R. Lemon has left the Applied Physiology Research Laboratory of Kent State University, Kent, OH, and has joined The University of Western Ontario, London, Ontario, Canada, Faculties of Health Sciences and Medicine, as Professor and Weider Chair of Exercise Nutrition.

Having accepted a position as Vice Provost for Research, Oregon Health Sciences University, Portland, OR, Manuel Martinez-Maldonado has joined The University of Western Ontario, London, Ontario, Canada, Faculties of Health Sciences and Medicine, as Professor and Weider Chair of Exercise Nutrition.

Jane E. McGowan has accepted a position as Associate Professor, Allegheny University Hospitals, MCP Division, Department of Pediatrics, Philadelphia, PA. Prior to her new position, McGowan was affiliated with the Department of Pediatrics, University of Pennsylvania, Philadelphia, PA.

Accepting a position with DesignWrite, Inc., Princeton, NJ, as a Medical Writer, Karen D. Mittleman, is no longer connected with Rutgers University, Exercise Science and Sports Studies, New Brunswick, NJ.

Dina Nicole Paltoo is now affiliated with the Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC. Formerly, Paltoo was a Postdoctoral Research Fellow, Department of Molecular Biology, University of Medicine and Dentistry, School of Osteopathic Medicine, Stratford, NJ.

Jørgen Søberg Petersen is currently affiliated with the Department of Safety Pharmacology, H. Lundbeck Pharmaceuticals, Valby, Denmark. Preceding his new position, Petersen was associated with the Department of Pharmacology, the University of Copenhagen, Panum Institute, Copenhagen, Denmark.

Naohide Yamashita is presently affiliated with the University of Tokyo, the Institute of Medical Science, Department of Advanced Medical Science, Tokyo, Japan. Previously, Yamashita was with the Tokyo University Branch Hospital, Fourth Department of Internal Medicine, Tokyo, Japan.

Having moved from the Department of Physiology & Biophysics, University of Nebraska Medical Center, Omaha, NE, Kun Zhang is presently with the Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX.

Deceased Members
Mathew Alpern
Ann Arbor, MI
Vicki L. Schechtman
Los Angeles, CA
Jack D. Meyers
Pittsburgh, PA
Michael E. Burt
New York, NY
Robert C. Darling
Wilmington, DE

Correction

Reza Shaker was incorrectly listed in The Physiologist, Vol. 41, No. 1, 1998, page 59, “People and Places,” as having left the GI Section of the VA Medical Center in Milwaukee, WI. Shaker had accepted the position of Chief of the Division of Gastroenterology and Hepatology, Froedert Memorial Lutheran Hospital, affiliated with the Medical College of Wisconsin. She has also continued to maintain her position at the Clement Zablocki VA Medical Center as a staff physician and as acting chief of the Gastroenterology Section. The Physiologist regrets this error.
People and Places

APS Members Elected to AAAS

The American Academy of Arts and Sciences (AAAS) has announced the election of 147 new fellows and 22 foreign honorable members. Following is a list of the newly elected fellows and members who are also APS members.

Marcus E. Raichle, Edwin Mallinckrodt Institute of Radiology, St. Louis, physiology, pharmacology, neurobiology, and behavioral biology.

Richard W. Tsien, Stanford University, medicine and public health.

Roger Y. Tsien, University of California at San Diego, physiology, pharmacology, neurobiology, and behavioral biology.

APS Member Elected to NAS

The National Academy of Sciences (NAS) has recently elected 60 new members and 15 foreign associates “in recognition of their distinguished and continuing achievements in original research.” Among the new NAS members is APS member Roger Y. Tsien, an investigator at the Howard Hughes medical Institute, and professor of pharmacology, chemistry, and biochemistry, at the University of California at San Diego.

Orkand Receives Fulbright

Richard Orkand, Institute of Neurobiology, San Juan, Puerto Rico, was recently given a Fulbright Scholar Award for 1998-1999. The award is for a four month duration in the Department of Neuroscience at the Institute of Experimental Medicine in Prague, where he will work with Eva Sykova on “Membrane Properties of Glial Cells in Rat Brain Transplants.”

Books Received

Biology by Numbers: An Encouragement to Quantitative Thinking.
Richard F. Burton.
New York: Cambridge University Press, 1997, 238 pp., illus., index, $19.95.

Cold Ocean Physiology.
H.O. Pörtner and R.C. Playle (Editors).
New York: Cambridge University Press, 1998, 498 pp., illus., index, $125.00.

Eicosanoids, Aspirin, and Asthma.
Andrzej Szczeklik, Ryszard J. Gryglewski, and John R. Vane (Editors).
Lung Biology in Health and Disease Series: 114.
New York: Dekker, 616 pp., illus., index, $195.00.

From Sound to Synapse: Physiology of the Mammalian Ear.
C. Daniel Geisler.
New York: Oxford University Press, 1998, 381 pp., illus., index, $65.00.

The Heart and Lung in Obesity.
Martin A. Alpert and James K. Alexander (Editors).
Armonk, NY: 1998, 253 pp., illus., index, $81.00.

Oxygen Transport To Tissue XIX.
David K. Harrison and David T. Delpy (Editors).
Advances in Experimental Medicine and Biology, Vol. 428.
New York: Plenum, 1997, 718 pp., illus., index, $175.00.

Physiology and Pathophysiology of the Islets of Langerhans.
Bernat Soria (Editor).
New York: Plenum Press, 1997, 457 pp., illus., index, $125.00.

Principles of Animal Design: The Optimization and Symmorphosis Debate.
Ewald R. Weibel, C. Richard Taylor, and Liana Bolis (Editors).
New York: Cambridge University Press, 1998, 314 pp., illus., index, $32.95.

Psychiatric Disorders with a Biochemical Basis.
David Donaldson.
New York: Parthenon, 1998, 241 pp., illus., index, $47.00.

Pulmonary Edema.
Michael A. Matthay and David H. Ingbar (Editors).
Lung Biology in Health and Disease, Vol. 116.
New York: Dekker, 1998, 732 pp., illus., index, $225.00.
ISBN: 0-8247-0150-X.

Recent Advances in Arthropod Endocrinology.
G.M. Coast and S.G. Webster (Editors).
New York: Cambridge University Press, 1998, 406 pp., illus., index, $110.00.

Why Geese Don’t Get Obese (And We Do).
Eric P. Widmaier.
New York: Freeman, 1998, 213 pp., illus., index, $22.95.
Letters to Arthur Vander

Horace W. Davenport writes: “When Arthur Vander asked me, as an 85-year old Senior-Senior Physiologist, to contribute some news or opinions to The Physiologist, I refused. Everything I had known or done as a physiologist is dead, and I refused to engage in the customary hand-wringing about how physiology has been taken over by molecular biologists who don’t know anything about classical physiology. I told Arthur it had been fun to learn about such topics as ventilation-perfusion ratios in the lungs and to teach students about them and their significance, and I wondered if present day physiologists enjoy their subject as much as I had enjoyed mine. Upon reflection, I thought a few readers of The Physiologist might be amused by an early experience of mine relating to ventilation-perfusion ratios.

“I became head of the Department of Physiology at the University of Utah in 1945, and for a while I thought it was my duty to attend some of the Grand Ronds and teaching clinics in the hospital. At the end of a Medical Grand Ronds the Professor of Medicine would say politely: ‘Perhaps Dr. Davenport would like to say something about this,’ and I would have to find a quick way of not making a fool of myself about a problem I had first heard about a few minutes earlier. I was asked a similar question at the end of a teaching clinic given for the first year students by Dr. Richards. Utah was full of Dr. Richardses, some medical and some surgical and some very distinguished in their specialty. This was old Dr. Richards, a surgeon who was known for having prescribed routine treatment with 100% oxygen in the recovery room with the result that post-operative morbidity and mortality had plummeted. That was the topic of the clinic I was asked to comment upon.

‘I had just finished reading Cecil Drinker’s little book, his Lane Lectures on Edema. Drinker whom I had known and admired when I was at Harvard was the King of Lymph. He refined jewelers’ tools so that he could collect lymph from almost every organ, and the results of his analysis of lymph had answered physiological questions and explained some pathological conditions. Drinker’s story based on animal experiments was that the dependent parts of the lungs lying along the spine of a recumbent patient become poorly ventilated although they continue to be perfused with venous blood. As the tissue becomes progressively hypoxic, the capillaries leak plasma proteins into the alveolae, providing a medium for ubiquitous pneumococci. As soon as I revealed the source of my comments, old Dr. Richards interrupted me, and turning to the class he said: ‘Now you pay attention to what he says. Although Drinker was a physiologist he had some horse sense!’”

J. H. U. Brown writes: “Thank you for your kind letter. It hardly seems 80 years since I was born and some 60 since I started in physiology. I am happy to respond to you a little. I still work more than half time. I am the District Manager of SCORE (Service Corps of Retired Executives), a non-profit national group which assists young people in starting in business in conjunction with the SBA and banks.

“This end of my career also expresses very well my life-long philosophy. I have always believed that if something had no practical use, it was (to me) of little value. My work in physiology was always aimed at understanding organ systems with an eye to treatment. It was on this basis that I developed a treatment for cancer still in use, the computer work which dealt with patient records, and the development of consortia between universities and research institutes to develop new methods of treatment.

“I was fortunate to be recognized in the field. Although I am a physiologist in training and inclination, I was one of the first of my ilk to be elected to the National Academy as an engineer.”

Kao Liang Chow writes: “Thanks for your kind notes about my 80th birthday. I am grateful to APS’ concern with us older members. I retired in 1984. The Department of Neurology at Stanford let me keep my office. I come in a few days a week, mainly to participate in laboratory meetings and seminars, but no teaching or research. I try to keep up with developments of my field, i.e., neurobiology of vision and memory. I feel that one should plan ahead about what one wants to do in retirement.

“My health is reasonably good, only have a slight cardiac arrhythmia which is controlled by drugs. My wife, Margaret, had a stroke 3 years ago. We used to travel often, but not now. We hope, in time, we will be able to travel again.”

Letters to William Stekiel

Andrew Schally writes: “Thank you for your kind letter of December 16. I have not retired. I am continuing my work in experimental endocrine oncology. Since the work on cancer is very demanding, my life is as hectic as ever.”

Anada Prasad writes: “Thanks for your kind letter dated March 6, 1998. I am still working full time as Professor of Medicine, Division of Hematology-Oncology at Wayne State University. I do consults in Hematology and participate in teaching of students, Residents in Internal Medicine and Fellows in Hematology, for three months in a year. The other nine months, I am involved in research. My major interests are in the fields of zinc, iron and copper metabolism in human health. I have just received a NIH-NCI grant for studies.”
related to the effects of zinc supplement-
tation on cell-mediated immunity in
patients with head and neck cancer.

“At the basic level, we are exploring
the role of zinc in the activation of NF-
KB activation and the production of IL-2
in HUT-78, a T cell human malignant
lymphoblastoid cell line.

“I am in good health and I hope that
I can continue my academic duties and
research activities for a few more years.
I am also Editor of American Journal of
Hematology and the Journal of Trace
Elements in Experimental Medicine.

“My research activities have been
truly very stimulating and rewarding.
Every little contribution that I have made
to science has given me a great deal of
satisfaction, in spite of all the frustrations
daily life in obtaining proper research
support.”

Letter to Eugene Renkin

Seymour Katsh writes: “Belated or not,
your thoughtful letter of 13th February,
1998, is invigorating. Not since Roy
(Greep) have I heard from my favorite
society--American Physiological Society.

“Two points of interest:
1. The card depicting William
Beaumont House--how many of recent
vintage can recall his contribution?
2. The postage stamp on your envelope
honoring Raoul Wallenberg--an honor-
ary citizen of the United States of
America for all his daring courage dur-
ing World War II. I know, as a son of
parents who immigrated to the USA to
escape persecution in Russia, his name
will shine together with that of the most
socially and politically advanced country
in the history of the world. Our parents
were able to live and educate themselves
and their children here and nowhere else.

“Yes, I am still active, going daily
voluntarily to fulfill commitments and to
assist in all matters called upon: adviso-
ry, administrative, grants/contracts pro-
posals, manuscript preparation and mod-
ification, laboratory investigations in
immunopharmacology, immunopatholo-
gy, immunoreproduction, autoimmune
disorders, etc., which my wife and I
investigated for years.

“As student, professor and
researcher, my wife Grace and my chil-
dren Sara, Judith, and Naomi deserve the
highest honors. Their love, their caring,
their patience, understanding, and sacri-
fices throughout the years and adversit-
ties stand as a beacon for all.

“As for words of wisdom for our
collegues, I do not believe wisdom is
age-related, at least not stoichometrically.
With age come experiences that may
teach how better to respond, how best to
avoid pitfalls or even how to be cleverly
evasive. Therefore, for me, the honest,
dedicated, hard-working thinker with
common sense (sachel) is as close as I
can hope to experience a collegial spirit.

So, any pearls of wisdom from any
source possessing that rare attribute
would be most welcome at this address.”

❖

APS Sustaining Associate Members

The Society gratefully acknowledges the contributions received
from Sustaining Members in support of the Society’s goals and objectives.

Abbott Laboratories
ADInstruments
Alliance Pharmaceutical Corporation
American Medical Association
Astra Arcus USA, Inc.
Axon Instruments, Inc.
Berlex Biosciences
Genentech, Inc.
Gould, Inc.
Grass Foundation
Harvard Apparatus
Jandel Scientific
Janssen Research Foundation
Kabi Pharmacia
Eli Lilly and Company

The Mack Printing Group
Merck & Company, Inc.
Nycomed, Inc.
Pfizer, Inc.
Pharmacia and Upjohn, Inc.
Procter & Gamble Company
Quaker Oats Company
Rhone-Poulenc Rorer
Sandoz Pharmaceuticals Corporation
W. B. Saunders Company
Schering-Plough Research Institute
G. D. Searle and Company
SmithKline Beecham Pharmaceuticals
Wyeth-Ayerst Laboratories
Looking for a good website on physiology career resources?

Go to... http://www.faseb.org/aps/career.htm to search for career resources and opportunities courtesy of the American Physiological Society

■ For an overview on physiology research, careers, and educational requirements, plus photos of physiologists in action, see the American Physiological Society’s Career Brochure.

■ Check out our Positions Available ads for job listings, including pre- and post-doctoral fellow, instructor, industrial, and faculty positions. Ads are accepted for either positions available or positions wanted under all categories.

■ For excellent career advice, information on different career paths, job-seeking strategies and more, see the statistics reports, articles by physiologists, and tip sheets located on the Career-Related Articles page.

■ We have compiled a number of links to job and career information online, research and training opportunities, and other sites of interest for job-seekers. Just go to the Links to Career-Related Information page.
Cystic Fibrosis Current Topics
J. A. Dodge, D. J. H. Brock, and J. H. Widdicombe (Editors)
Somer set, NJ: Wiley, 1997, 369 pp., illus., index, $99.95
ISBN: 0-8247-9722-1

In 1989, the defective gene responsible for cystic fibrosis (CF) was identified and its protein product named the cystic fibrosis transmembrane conductance regulator (CFTR). With the identification of the CFTR gene, the molecular abnormality responsible for the cell and tissue defects in CF could be investigated and new therapies based on a rational understanding of the disease developed. The pace of discovery has been rapid and as a result, many textbooks of CF research have become obsolete. To overcome this problem, John Dodge, David Brock, and Jonathan Widdicombe conceived the idea of a series of books that summarize the latest developments in CF research. Each volume contains new information about the molecular genetics of CF, the cell and molecular physiology of CFTR, and the clinical management of CF, written by internationally recognized experts. The chapters are well-written and illustrated, and each is accompanied by an extensive bibliography. Thus, these books are an invaluable source of reference for the CF research community. They should also be of interest to other investigators including those studying epithelial ion transport, ion channels, and ATP-binding cassette (ABC) transporters.

CFTR is a small conductance Cl⁻ channel, regulated by phosphorylation and ATP hydrolysis, that is predominantly located in the apical membrane of epithelia. In the latest volume in the series, Cystic Fibrosis Current Topics, two chapters investigate the molecular basis of CFTR Cl⁻ channel function. David Dawson and his colleagues comprehensively review what is known about the relationship between the structure and function of the CFTR Cl⁻ channel. David Gadsby and Angus Nairn explain the complex regulation of CFTR Cl⁻ channel gating by protein kinases and phosphatases, and hydrolysable nucleoside triphosphates. This chapter is likely to be widely consulted by investigators studying the gating behaviour of ion channels.

In addition to its best-characterized function as a regulated Cl⁻ channel, CFTR has been suggested to have other roles in epithelial cells, including the regulation of other ion channels. Jackson Stuts summarizes the evidence for CFTR regulation of the outwardly rectifying Cl⁻ channel (ORCC) and the epithelial Na⁺ channel (ENaC) in airway epithelia. He discusses possible mechanisms by which CFTR may regulate ORCC and ENaC and the physiological significance of this regulation.

Many CF-associated mutations, including the most common, DF508, cause a loss of Cl⁻ channel function because they disrupt the processing of CFTR and its delivery to the apical membrane of epithelial cells. In this volume, two chapters examine the intracellular processing of wild-type and mutant CFTR. Cristina Ward and Ron Kopito concisely review recent new information about the biosynthesis of CFTR, such as the degradation of CFTR by the ubiquitin-proteasome system. Andrew Morris describes the mechanisms that control the targeting and trafficking of CFTR in cultured intestinal epithelial cells. These include GTP-binding proteins, and protein kinases and phosphatases that regulate vesicle movement between intracellular compartments in the biosynthetic pathway.

A wide spectrum of clinical pathology is associated with mutations in CFTR. The typical CF phenotype of severe lung disease and exocrine pancreatic dysfunction is caused by genotypes that cause a complete loss of CFTR function. However, as highlighted by Lucy Osborne, congenital bilateral absence of the vas deferens (CBAVD), a male infertility disorder, is associated with genotypes that preserve some CFTR function. Other chapters of interest to geneticists include a review of the evolution of CF alleles, and two articles on screening for mutations in CFTR.

The major causes of debilitation and death in CF are chronic obstructive lung disease caused by thick mucus secretions and persistent bacterial infections of the respiratory airways, commonly with Pseudomonas aeruginosa. In this volume, two chapters describe treatments for these conditions. Anne Thomson describes the pathogenesis of hypersecretion in CF and the use of mucolytic agents, such as human recombinant DNase, in the management of CF. Robert Hancock and David Speert summarize the efficacy of the different antibiotics available to treat Pseudomonas aeruginosa infections and the different routes by which these drugs may be administered. The final chapter, which discusses clinical scoring systems for CF, should be read by those planning clinical trials of new therapies for CF.

As the editors acknowledge, the problem with the series Cystic Fibrosis Current Topics is that much of the information rapidly becomes out of date. Since the publication of the latest volume, Smith et al. (1) demonstrated that a loss of CFTR Cl⁻ channel function prevents the killing of bacteria by salt-sensitive antimicrobial factors that are present in airway surface fluid, Rozmahel et al. (2) identified a secondary genetic factor that modulates the severity of intestinal disease in CF mice, and Rubenstein et al. (3) discovered that sodium 4-phenylbutyrate, a drug that is approved for clinical use, can overcome the defective processing of the DF508 mutation. If they haven’t already done so, perhaps it’s time that editors began to prepare the next volume of Cystic Fibrosis Current Topics.

References

David N. Sheppard
University of Edinburgh
Optimizing Sport Performance

David Lamb and Robert Murray (Editors)
Perspectives in Exercise Science and Sports Medicine, Vol. 10
Carmel, IN: Cooper, 1997, 365 pp., illus., index, $45.00
ISBN: 1-88412563-8

Optimizing Sport Performance is the 10th edition of edited volumes in exercise science in sports medicine sponsored by Gatorade. The volume encompasses a wide variety of established or putative ergogenic aids as well as topics that have performance consequences (e.g., immune function and injury). Chapters are topically organized and each includes sections on practical implications and directions for future research. Each chapter is also followed by a transcription of the discussion that followed the conference presentation. These sections are insightful, particularly because they involve dialog among the chapter authors and other experts. As these discussions highlight current issues and controversies in the data, it may be useful for readers to peruse them prior to reading each chapter. Chapter one is an overview of applied sport psychology by William Morgan, and is perhaps the broadest in scope of all the contributions. Morgan casts a critical eye on the extant literature and soundly debunks some of the widely favored techniques of sport psychology including relaxation and goal setting. Various methodological limitations of the literature are discussed, in particular the absence of placebo comparison conditions. For exercise scientists unfamiliar with the sport psychology literature, this information is particularly useful. Chapter two “Advances in the Evaluation of Sports Training” by Harms Kuipers provides a wide ranging overview of the various means used to assess not only exercise capacity and performance but also methods used to monitor the response to overtraining. The discussion of heart rate monitors, while brief, outlines the potential problems associated with relying in single measurements. Edward Coyle presents a comprehensive overview of exercise and carbohydrate in chapter three. A reasonably detailed overview of energy utilization during exercise is presented which precedes discussion of the literature on supplementation prior, during and following exercise. The consequences of various types of carbohydrate are also presented. Importantly, Coyle summarizes research findings regarding the putative ergogenic effects of recently popularized high fat diets, and the conclusions drawn from the literature compellingly supporting the central importance of carbohydrate to prolonged exercise performance. Ron Maughan’s chapter presents the literature on hydration and exercise and the various factors that interact with hydration. The complexities of what may initially seem like a simple issue are well described, particularly notable are his efforts to address equivocal findings in the literature. The practical information in this review would be helpful to the researcher and athlete alike. Lawrence Spriet reviews the literature on nutritional and other exogenous ergogenic aids. The discussion is delimited to findings regarding creatine, caffeine, and erythropoietin, in large part because of the acceptance of these substances by the athletic community. In each case the theoretical basis is presented and the findings of recent studies are presented, as well as descriptions of potential health consequences. Spriet gives particular attention to methodological weaknesses and confounds in the extant literature. For example, the long washout period for caffeine precludes the use of crossover studies. Issues regarding subject characteristics and performance measures are also well-described and would be helpful to researchers contemplating research on these or other ergogenic factors. Randy Eichner’s chapter addresses health screening in athletes, particularly for cardiovascular disease. The most common forms of cardiovascular disease and trauma are presented. The various means of screening and their limits are described, both in terms of sensitivity and specificity. Information on the consequences of other health conditions found in athletes is also presented. Perhaps most importantly, the useful practical information on screening and treatment is provided throughout this chapter. Davis and Colbert overview the literature on exercise and immune function, focusing specifically on the potentially deleterious consequences of intense acute exercise and chronic overtraining, particularly regarding upper respiratory track infection. A detailed overview of the immune system and the roles of specific immune factors precedes discussion of the exercise literature. Research involving animal models is presented but the authors are careful to delineate the limits of these findings to humans. Overtraining research is presented and again the authors are careful to point out the short-comings of these studies, particularly the lack of a clear etiology and definition of the overtraining syndrome (i.e., staleness). The final chapter by Perry, Knapp, and Mandelbaum concerns injury prevention and recovery, focusing on injuries of the knee, ankle and stress fractures. The various factors contributing to these injuries are discussed and useful flow charts of diagnosis and treatment are presented. Preventive measures are also discussed. The information in this chapter is rather technical and more suited for sport medicine physicians or athletic trainers. In summary, *Optimizing Sport Performance* provides a comprehensive overview of the current state of research on ergogenic aids. The book would be appropriate as an advanced level undergraduate text or a graduate text for a course on human performance. The authors should be lauded for including recent studies and summarizing findings with a goal of resolving controversies or differences in the literature whenever possible. As such, the book would also be useful to exercise scientists who conduct research on these topics.

Book Reviews

The Physiologist

Moving?

If you have moved or changed your phone, fax, or e-mail address, please notify the APS Membership Office at 301-530-7174 or fax to 301-571-8305.
The Origins and Consequences of Obesity
Ciba Foundation Symposium 201
New York: Wiley, 1996, 278 pp., illus., index, $84.95

The Origins and Consequences of Obesity is the result of a three-day conference held in Kingston, Jamaica over two years ago in November 1995. The conference was organized by the Ciba Foundation and participants included a multidisciplinary group of 30 experts in obesity, representing institutions in the United Kingdom (9), United States (8), Jamaica (5), Denmark (2), Sweden (1), Finland (1), Barbados (1), Canada (1), Italy (1), and New Zealand (1). The book includes 14 chapters representing the oral presentations made at the conference. These chapters cover the epidemiologic, genetic, metabolic, nutritional, behavioral, psychosocial, economic, and therapeutic aspects of obesity.

Knowing a number of the conference participants, as well as the many areas of current scientific controversy in obesity, I imagine that the discussions were very active and free-wheeling. The editors of this volume (D. J. Chadwick and G. Cardew) appear to have captured the spirit of the discussions while at the same time imposing a useful structure on the interchange among participants that occurred at the end of each presentation. Each chapter ends with a discussion section that recapitulates and orders the interchange. In addition, two lengthier general discussion sections are included between related groups of chapters. I found it especially useful that many of the statements in the body of the discussion sections were referenced, and the full references were included at the end of each discussion section. Indeed, in some cases the discussion that followed a chapter made more interesting and more informative reading than the chapter itself.

If there is any criticism of the book’s format it is with the order of the chapters. The title of the book suggests that the putative etiologies of obesity will be presented first (genetics, metabolic efficiency, intrauterine influences, dietary intake, physical activity, socioeconomic status) to be followed by obesity’s biologic and health effects (hypertension, hypercholesterolemia, diabetes, cardiovascular disease, economic and psychosocial consequences). Instead, chapters on causes and effects of obesity are presented in no particular order. For example, separate chapters on diabetes and cardiovascular disease are followed by a chapter on genetics, while a later chapter on economic and psychosocial consequences of obesity is followed by a chapter on physical activity. Given the complexity and current uncertainties of these issues, greater comprehension would likely be achieved if the ordering of the chapters was more predictable.

Several limitations of the book are related to the time that has passed since the original conference was held. In the chapter on the epidemiology of obesity (Table 1, p. 7) age-standardized prevalence estimates of adult obesity, defined as body mass index >30 kg/m², are given for a number of countries using data collected in the early 1990s. The prevalence estimate for the US, however (12%), is based on data collected in the late 1970s, because the most recent US data were just published in early 1998 (it is currently estimated that the prevalence of obesity in the US has risen to about 20%). The conference was held before last year’s withdrawal from the market of the highly touted weight loss drugs fenfluramine (Pondimin®) and dexfenfluramine (Redux®). These drugs were withdrawn because they were found to be associated with a substantial increase in the risk of cardiac valvulopathy. Thus, the chapter on treatment of obesity expresses more optimism about the risk-benefit of pharmacotherapy for obesity than may now be warranted. This chapter also contained an unfortunate misinterpretation of one of my own studies, cited in the last two paragraphs on page 229 [Williamson et al. (1995)]. Contrary to what is written, my study found no evidence that intentional weight loss reduced total or cardiovascular mortality in obese women without pre-existing illness.

The prospective reader of this volume should be forewarned that there was considerable lack of general agreement among this world-class group of experts about some very basic issues in obesity. For example, in two separate chapters—one on the genetics of obesity and one on obesity and socioeconomic status—the presenters indicated that heritability estimates suggest the genetic contribution to obesity is in the range of 25-40%. In the general discussion, however, this assertion was directly and forcefully challenged by a participant who believed that the bulk of the evidence suggested that the contribution of genetics to obesity was closer to 70%. Disagreement was also voiced by the participants in relation to the etiologic roles of dietary fat and physical activity as causes of obesity, as well as regarding the shape of the relationship between body mass index (a commonly used epidemiologic surrogate for total adiposity) and mortality risk.

The realization that such fundamental issues in obesity remain actively debated may lead the new researcher away from the field in disillusionment and despair. The more experienced, or more stout-hearted, researcher, however, may find this state of affairs ripe for disciplined, and ultimately fruitful research. Although this volume will not be terribly enlightening to scientists seeking an in-depth treatment of the specialty areas in obesity research, I certainly recommend The Origins and Consequences of Obesity to those contemplating a career in obesity research and to those established scientists interested in a rigorous, but broad, overview of the field.

David F. Williamson
Centers for Disease Control and Prevention

The Physiologist
is now available via the World Wide Web.
Point your browsers to:
Multiple Choice Questions in Physiology, 3rd Edition
Lynn Bindman, Peter Ellaway, Brian Jewell and Laurence Smaje
New York: Oxford University Press, 1997, 131 pp., illus., $22.95

This book is a well-written and meticulous compilation of questions utilized in the Medical Physiology course at University College London. The format of the book is conducive to rapid review, quick examination of one’s level of knowledge and easily accessible correct answers. On the left, multiple-choice questions are presented; each with multiple true and false choices. On the right, the corresponding correct answers and concise explanations are given. A total of 158 questions are included in the book. The information presented is accurate, choices are clear and ambiguities are rare. The British flavor of the book is obvious in expressions such as adrenaline, nerve fibre, litre, etc. but should not overly distract US readers.

The organization of the book and the order of presentation of topics are somewhat unique. Cell physiology, for example, is in section nine; gastrointestinal physiology receives greater coverage than renal physiology. Hypertension and the role of the kidneys in hypertension are largely ignored while anemias receive extensive coverage. General physiology topics are scattered throughout the book and are not covered in a separate section. Some general physiological principles such as body fluid compartments and their composition; water channels; Na⁺, K⁺, Cl⁻, Ca²⁺ and other ion channels; cellular polarity and the biophysical principles guiding physiological processes receive only cursory attention or none at all. Temperature regulation is only slightly covered. For renal physiology: counter-current multiplication; renal blood flow; pressures within intrarenal compartments; regulation of afferent and efferent arteriolar tone; renal paracrine hormones; renal nerves; the regulation of renin release need additional coverage. In addition, the acid-base section is very brief. The renal proton pump is not emphasized.

One of the greatest strengths of this book is its brevity. An average student can readily use it in one day. Its format and clarity aid quick learning. An admirable quality of the book is its stated desire (see Aims in Preface) to present questions that “test reasoning power and ability to interpret data” instead of just memory recall. The authors succeeded superbly in this undertaking. Although the book covers only the absolute essentials of medical physiology, it should be very useful to students who are reviewing for final exams or Part I of the United States Medical Licensing Examination. Faculty may use it to prepare test questions that “all students should be able to answer.” The price of the book is somewhat steep for its size ($22.95 for 131 pages) but the quality of its contents may justify the cost.

In summary, “Multiple Choice Questions in Physiology” is a compact, well-written and high-quality review of the essentials of medical physiology. Its brevity is its strength (it can be studied in one day) as well as its limitation (it covers the absolutely essential concepts but it is skimpy in some areas). It should be useful for health professional students reviewing for exams and for busy faculty who wish to save time making up new test questions yearly. A great value in the book lies in its electronic adaptability. A selection of the questions can be downloaded from the World Wide Web for student or faculty use.

Michael L. Kauker
University of South Dakota
Scientific Meetings and Congresses

1998

June 24-27

June 27-29

June 28-July 2
International Conference on Intensive Cardiac Care, Jerusalem, Israel. Information: ISAS International Seminars, PO Box 574, Jerusalem 91004, Israel. Tel: +972-2-6520574; fax: +972-2-6520558; e-mail: isas@netvision.net.il.

June 28-July 3
3rd International Congress of Pathophysiology, Lahti, Finland. Information: ISP98, Department of Physiology, University of Kuopio, 70211 Kuopio, Finland. Tel: +358-17-163-080 or 163-108; fax: +358-17-163-112; e-mail: isp98@uku.fi; Internet: http://packer.berkeley.edu/conferences/isp98.html.

July 19-24
International Symposium on Optical Science, Engineering, and Instrumentation (43rd Annual SPIE Meeting), San Diego, CA. Information: SPIE International Headquarters, PO Box 10, Bellingham, WA 98227-9861. Tel: 360-676-3290; fax: 360-647-1445; e-mail: sd98call@spie.org; Internet: http://www.spie.org/info/sd.

July 23-24
Cardiovascular Aging (XIII International Congress of Pharmacology Satellite Symposium), Nancy, France. Information: Cardiovascular Research Group, Faculty of Pharmacy, 5 rue Albert Lebrun, 54000 Nancy, France. Tel: +33-03-83-17-88-41; fax: +33-03-83-17-88-79; e-mail: atkinson@pharma.u-nancy.fr; Internet: http://www.uhp.u-nancy.fr/Pharma/CRG.

July 29-31
Immune-Neuroendocrine Interactions: Cellular and Molecular Mechanisms, University Park, PA. Information: Carey Shuey, Penn State University, 108 Althouse Laboratory, University Park, PA 16802. Tel: 814-863-1918; e-mail: cls20@psu.edu.

August 2-5
9th International Symposium on Vascular Neuroeffector Mechanisms, Porto, Portugal. Information: S. Giurumaru, Instituto of Pharmacology and Therapeutics, Faculty of Medicine, P-200 Porto, Portugal. Fax: +351-2-5502402.

August 17-21
Rice University Institute of Biosciences and Bioengineering Sixth Annual Seminar: Advances in Tissue Engineering, Houston, Texas. Information: Rice University, School of Continuing Studies - MS 550, 6100 Main Street, Houston, TX 77005-1892. Tel: 713-527-4803; fax: 713-285-5213; e-mail: scs@rice.edu; Internet: http://www.rice.edu/scs/tissue.

August 23-28
Fifth International Congress of Comparative Physiology and Biochemistry, Calgary, Alberta, Canada. Information: Secretariat, Fifth International Congress of Comparative Physiology and Biochemistry, Special Events and Conference Office, University of Calgary - Olympic Centre, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4. Tel: 403-220-5261; fax: 403-289-9311; e-mail: iccpp@acs.ucalgary.ca; Internet: http://acs.ucalgary.ca/~iccpp99/.

September 3-5
International Symposium on Ovarian Aging and Failure, Brussels, Belgium. Information: Belgian Menopause Society, 251 Avenue Reine Astrid, 1950 Kraainem/Belgium. Tel: +32-0-2-569-81-33; fax: +32-0-4-254-12-90; e-mail: ypc@compuserve.com.

September 6-9
European Atherosclerosis Society 70th EAS Congress, Jerusalem, Israel. Information: Yechezkiel Stein, 70th EAS Congress, PO Box 50006, Tel Aviv 61500, Israel. Tel: +972-3-5140014; fax: +972-3-5175674 or 5140077.

September 19-23
European Respiratory Society Annual Congress, Geneva, Switzerland. Information: European Respiratory Society, 1 boulevard de Grancy, CH-1006 Lausanne, Switzerland. Tel: 41-21-613-02-02; fax: 41-21-617-28-65; e-mail: ersnet.org.

September 27-October 1
Brisbane '98: Asian-Oceania Congress of Australian Physiological and Pharmacological Society, Australian Neuroscience Society, and Physiological Society of New Zealand, Brisbane, Australia. Information: Brisbane '98 Secretariat, GPO Box 2609, Sydney, NSW 2001, Australia. Tel: +61-2-9241-1478; fax: +61-2-9251-3552; e-mail: reply@icmsaust.com.au.

October 14-18
American Association of Electrodiagnostic Medicine 45th Annual Scientific Meeting, Orlando, FL. Information: AAEM, 21 Second Street SW, Suite 103, Rochester, MN 55902. Tel: 507-288-1000; fax: 507-288-1225; e-mail: aaem@aol.com.

October 10-12
Metabolism and Exercise: Regulation and Integration of Physiological Systems, Cleveland, OH. Information: Marco E. Cabrera, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106-6011. Tel:216-844-5085; fax: 216-844-5478; e-mail: mec6@po.cwru.edu; Internet: http://www.ccf.org/ri/bme/bmes.

October 10-13
Relating Biomedical Engineering Research to Clinical and Commercial Applications. Annual Meeting of the Biomedical Engineering Society, Cleveland, OH. Information: Cleveland Clinic Foundation, Department of Continuing Education, 9500 Euclid Avenue TT31, Cleveland, OH 44195. Tel: 216-444-5696 or 1-800-762-8173; fax: 216-445-9406.

October 18-23
Principles and Practice of Tracer Methodology in Metabolism, Galveston, Texas. Information: Robert R. Wolfe, PhD, Course Director, UTMB/Shriners Burns Institute, Metabolism Department, 815 Market Street, Galveston, TX 77550. Tel: 409-770-6623; fax: 409-770-6825; e-mail: rwolfe@sbi.utmb.edu.
1998-1999 Meetings and Conferences

Endothelial Regulation of Vascular Tone: Molecular to Integrative Physiology
September 16-19 1998; Augusta, GA

The Paraventricular Nucleus of the Hypothalamus: A Crossroads of Integrative Physiology
December 5-9 1998; San Antonio, TX

Experimental Biology '99
April 17-21 1999; Washington D. C.

Determinants of Vigilance: Interaction Between the Sleep and Circadian Systems
Date and Location to be Decided

Biology of Potassium Channels: From Molecules to Disease
Date and Location to be Decided

Please send me program and registration information for the following APS Conferences:

☐ Endothelial Regulation of Vascular Tone: Molecular to Integrative Physiology

☐ The Paraventricular Nucleus of the Hypothalamus: A Crossroads of Integrative Physiology

☐ Experimental Biology '99

☐ Determinants of Vigilance: Interaction Between the Sleep and Circadian Systems

☐ Biology of Potassium Channels: From Molecules to Disease

Name __
Department __
Institution ___
Address __
City/State ___
ZIP/Postal Code ___
Country __
Phone __

E-mail __

Mail to: The APS Conference Office, The American Physiological Society
9650 Rockville Pike, Bethesda, MD 20814-3991, USA

Or fax your request to 301-571-8313

Phone: 301-530-7171 E-mail; meetings@aps.faseb.org Web; http://www.faseb.org/aps

TPHYS698
General Information
info@aps.faseb.org

Awards
awards@aps.faseb.org
Fax: 301-571-8305

Education
educatio@aps.faseb.org
Fax: 301-571-8305

Meetings
meetings@aps.faseb.org
Fax: 301-571-8313

Membership
members@aps.faseb.org
Fax: 301-571-8313

Public Affairs
paffair@aps.faseb.org
Fax: 301-571-8305

Publications
publicat@aps.faseb.org
Fax: 301-571-1814

Subscriptions
subscrip@aps.faseb.org
Fax: 301-571-8313

APS Sections

ListServes
To subscribe to a ListServ:
send an email from your computer to:
LISTPROC@LISTS.APS.FASEB.ORG
Do not type anything in the “subject” field.
Type the following in the “message” field:
Subscribe ListServ your name”
i.e., for a subscription to Respiration Section:
ListServ: Subscribe RESPSEC John Doe

Sections
Cardiovascular SectionCVSEC
Cell and General Physiology SectionCELLSEC
Central Nervous System SectionCNSSEC
Comparative Physiology SectionCOMPSEC
Endocrinology and Metabolism
Section ENDOSEC
Environmental and Exercise Physiology
SectionEEPSEC
Gastrointestinal SectionGISEC
Neural Control and Autonomic Regulation
SectionNCARSEC
Renal SectionRENASEC
Respiration SectionRESPSEC
Teaching of Physiology SectionTEACHSEC
Water and Electrolyte Physiology
SectionWEHSEC

Groups
Epithelial Transport GroupEPIGRP
History of Physiology GroupHISTGRP
Hypoxia GroupHYPOXGRP
Members in Industry GroupINDUSGRP
Myo-bio/Muscle GroupMYOGRP