The expectation for most PhD students working in a basic science field is to have their own laboratory and become independent scientists. Any deviation from this career path is typically not perceived as success from the perspective of traditional bench scientists, as addressed in “Career Paths Beyond the Ivory Tower” (7). This perception is often coupled with an unsupportive environment, making the transition to a different career path a challenging task.

When I decided to leave the laboratory and become a full-time educator, I met this challenge by seeking help and advice from colleagues, friends, and various resources, such as teaching-focused books and professional society education websites. The transition from the bench to the classroom came with its challenges, many of which I wished I would have known sooner. This article highlights some important lessons learned for making the transition from a position in a basic science laboratory to the classroom as a full-time teaching faculty.

I completed my PhD and postdoctoral training in a basic science field. Soon after my postdoctoral training, I accepted a nontenured position at a research-intensive university as a research assistant professor. Even though I was awarded a federal research grant and had salary support, I wanted to devote more time to teaching.

I thought I knew what teaching entailed because, during my graduate studies, I was asked to lecture and be involved in the laboratory portion.

Continued on page 7
Contents

- Transitioning from the Bench to the Classroom, an Education-Intensive Career ... 1
- Caveat Emptor ... 1

APS News

- Novo Nordisk Foundation Continues Support of APS Awards .. 11

Chapter News

- Nebraska Physiological Society 18th Annual Meeting .. 13

Experimental Biology

- EB 2016 Distinguished Lectures 15
- Upcoming EB Symposia ... 17
- Experimental Biology 2016 .. 18

Education

- APS Promotes Physiology to K-12 Teachers at Fall Meetings ... 25
- APS Participates in the 2015 Eastern Regional HAPS Conference .. 26
- APS at SACNAS 2015 .. 27
- APS Awards and Fellowships .. 28

Science Policy

- APS Members Urge Congress to Raise Budget Caps and Support Research 30
- APS Urges U.S. to Oppose International Restrictions on Ketamine .. 32
- NIH Simplifies the Vertebrate Animal Section of Proposals .. 33

Publications

- Current Calls for Papers .. 34

Membership

- New Regular Members .. 35
- New Graduate Student Members 36
- Undergraduate Student Members 37
- Affiliate Members .. 37

Meetings

- 2015 APS/ET-14: International Conference on Endothelin: Physiology, Pathophysiology, and Therapeutics 38
- Physiological Bioenergetics: From Bench to Bedside .. 41
- Cardiovascular, Renal and Metabolic Diseases: Physiology and Gender 43

People and Places

- Kibble Presented with Robert J. Glaser Distinguished Teacher Award 47
- Chien Recognized as Franklin Institute Award Laureate .. 47

News From Distinguished Physiologists

- Letter to Lois Heller .. 48
- Letter to Lois Heller .. 49

Positions Available .. 50

Meetings and Congresses .. 59

- 14th International Conference on Endothelin: Physiology, Pathophysiology and Therapeutics Conference Program & Abstracts 61

Physiological Bioenergetics: From Bench to Bedside Conference Program & Abstracts 103

- Cardiovascular, Renal and Metabolic Diseases: Physiology and Gender 135
Continued from page 1:
Transitioning from the Bench to the Classroom, an Education-Intensive Career

in courses in the Nursing, Nutrition, and Dental School for short periods of time. I really enjoyed these little moments of teaching. Then two separate opportunities to teach an entire course at a community college emerged. The first was when I was a postdoctoral fellow and then again when I was a research assistant professor, and I took them both. However, these part-time teaching opportunities did not fully prepare me for the transition to my next position as a full-time educator.

Teaching Is Not Just Lecturing

It was after I made the transition to teaching full time that I realized teaching was not merely lecturing but also involved engaging the students and so much more, including offering research and service activities to students. My new position was at a professional school, and I had to adapt the classroom material to the students’ specific needs. I chose to tackle my new challenge by using the same scientific method approach I had used in the laboratory. My hypothesis became my way of teaching, the aims were my courses, and my test subjects were the students.

During the first years, I went through an immense amount of troubleshooting, including preparing lectures, writing exams, posting grades and lectures using different platforms, analyzing validity of questions, getting involved in shared governance, etc. Although not physically in the laboratory, I had created a laboratory in the classroom. Who would have thought that a PhD experience in a laboratory would have so many similarities with the classroom?

If you think about teaching as monotonous work, think again. Teaching is as diverse as the laboratory. Students are very different within the same course and among different semesters or years; you constantly change your teaching style, maybe even your teaching philosophy, evolving and adapting to the ever-changing world of education. Although similar to the laboratory experience, transferring from test tubes and animal models in the laboratory to human subjects in the classroom requires anticipation, adaptation, and training.

If you are considering becoming a full-time professional educator, then I would highly recommend the following, keeping in mind that all these aspects intertwine with each other.

1) Be Proactive and Get Ready by Getting Information Ahead of Time

It may seem obvious, but you should spend time researching this new world of teaching before making your move. A “teaching only” job involves more than teaching. Research and service are also part of your teaching portfolio, so carefully consider what is involved in an “education-intensive career.” Collect feedback from others who have made a similar transition. You are not the first scientist to make this change, so take advantage of the experiences of those who made it. If you do not know anyone personally, ask friends and colleagues and contact scientists who have recently become primarily teachers. They are the best sources to give you thorough and valuable input. Ask detailed questions about technology in teaching, pedagogy, words of advice/mentoring, and start networking in academia.

I would also encourage you to gain your own experience before embarking in the full-time endeavor by looking for teaching, tutoring, or lecturing opportunities. Shadow a teacher, do some informal teaching in a guest lecture, course, laboratory, etc. Start acquiring those experiences early. There are several programs that provide training in college classrooms, such as the NIH Institutional Research and Career Development Award (http://www.nigms.nih.gov/Training/CareerDev/Pages/TWDDInstRes.aspx).

Teaching is not only presenting materials in a lecture. It is not as sterile as the laboratory. It implies several aspects: 1) helping to translate knowledge with a personal touch, dealing with students on a daily basis in the classroom, during office hours, through advising, and mentoring; 2) keeping updated with technology advances that we allow to invade the classroom to keep up with the technology-savvy new generations of students; 3) dealing with the pressure of exam preparation and grading; 4) generating scholarship; and 5) integrating service.

Be aware that research or scholarship are required in addition to service, which translates into more hours in meetings and committee work than you would anticipate, often exceeding lecture or laboratory time (4). Thus do your homework first and get your feet wet. What a better way to start!
2) Network, Network, and Network

Networking is key before, during, and after your transition into full-time educator (3). Before the transition, get input from colleagues outside and inside your institution fostering community. It is less complicated than what it seems. I contacted a few full-time teachers who had left my institution but had continued doing some bench research projects. They shared their experiences and answered my questions.

You do not have to be extroverted to network. You can contact people via e-mail, through social media, or in person. One of my contacts was kind enough to invite me to her lectures and gave me a tour of the institution, while encouraging me to apply for a position that was soon to be posted.

You can also attend conferences where teaching styles and experiences are shared and continue networking.

To succeed as an educator, practice to be a good communicator, network, be proactive, and volunteer for some committees. The more people you interact with, the more you’ll know about your new institution and how to succeed in it. Outside of your institution, the APS also offers numerous committee opportunities (5); use them not only for professional development, as we will address later, but also as a networking tool.

3) Seek Professional Development

Basic science doctoral work and courses do not include pedagogy, but a PhD qualifies you for a teaching position without the necessary training in pedagogy. Before your transition, read about teaching techniques, pedagogy, learning styles, etc. It may seem daunting at first, but it will be worthwhile (2).

Once you start your new teaching position, utilize the faculty development courses/workshops/seminars offered by your institution. Make it a priority to attend teaching workshops or seminars. If they are not offered at your institution, find them at conferences. Experimental Biology (experimentalbiology.org) offers numerous professional development opportunities for basic scientists in the APS Teaching Section. In 2016, APS will hold the second Institute for Teaching and Learning (http://www.the-aps.org/itl.aspx), which is another good opportunity for professional development. The information gathered in these sessions will impact your teaching style and provide networking opportunities.

Do not attend professional development activities only as a part of your portfolio. It is not effective unless you use it to improve your instruction. Remember that effective teaching is the result of study, analyses, practice, and persistent hard work. You never can know enough about how a student learns, what facilitates or impedes learning; your students change, and unless you adapt to them, your teaching will not be effective.

During professional development activities, you will have the opportunity to meet professors at different stages of their career. Use their experience and advice to your benefit, keep in contact with them, and find a mentor. Some institutions provide you with a mentoring system, but others do not. Be proactive and find a mentor in your institution or outside if there is not a suitable mentor for your discipline on site. Finding a mentor is tremendously helpful and valuable for your teaching and for the “promotion and tenure” process inherent to your new career path as an educator.

Professional development will ensure you are up-to-date and will contribute to continuously solidify you as a teacher.

4) Measure, Assess, and Document

Just like in the laboratory, don’t wait until the last minute to plan periodic assessments of your teaching style to determine what works and what does not work for you and your students. It is important to measure what and how much the students are learning (1). Is the learned material aligned with the course objectives and the university standards?

Nowadays, you have access to numerous assessment tools, including the ones provided by newer technologies found in many classrooms. Use them if you have them. There are endless assessments and evaluations that will enhance your teaching experience and the learning experience of the students (1).

The skills you bring from the laboratory will be very useful. In the laboratory you learned to document your experimental designs and measure your results. Assessment is vital to continue your research activities. All those years of building up patience, overcoming adversity, trying different alternatives, performing critical analyses, and problem solving will bear their fruit in this alternative path, too. The laboratory is now a classroom with PowerPoint and desks instead of a bench and test tubes.

It constitutes a big time commitment, so set up time apart for assessments, since they are invaluable because you can utilize assessments to build scholarship as you develop your curriculum vitae (see below). Publish your
observations. Invest your time in writing, and publish your teaching scholarship.

5) Protect Your Time
Time management is an important part of achieving your goals. Start with the goal in mind. There are numerous activities in a teaching-focused career that will take your time: scholarship, service, and outreach activities, in addition to class preparation, networking, seeking professional development, and assessing your courses and students, all of which are important aspects of your academic life. You can anticipate and plan for all these activities, dividing your day accordingly. Allow yourself to be flexible, since priorities may fluctuate weekly, but by proactive planning you will reduce the time that you need to work from deadline to deadline.

Administrative tasks and e-mails will also take your precious time away. You will have to decide between being productive vs. being available to students. Set up a time for office hours and include the time you will respond to e-mails in your syllabus. Plan your schedule and be productive in all areas. If you clearly communicate your plan, then students will be more receptive and the process will become more efficient.

Use a similar approach for administrative tasks. Make your calendar available to administration so they can plan around your schedule. Otherwise, they will never be considerate of your time. Ask them to respect your blocks of “busy” time that they can actually see in your shared calendar.

And finally, delegate tasks, especially to the right person, to efficiently protect your time and to allow you to focus on those tasks that need your complete attention.

It may seem daunting and you may not be able to efficiently manage your time during the first year, but by assessing and evaluating your schedule and goals you will eventually get there.

6) Develop Your Curriculum Vitae (CV)
Do not wait to develop your CV until it is time for promotion and tenure. Start on day 1. Your curriculum is important for your promotion and tenure, and is mainly evaluated according to three different aspects: teaching, research/scholarship, and service. Use your mentor, networking connections, and professional development opportunities to develop your teaching portfolio.

Know upfront how you will be evaluated; every institution has different processes. The emphasis placed on any of these three aspects in promotion and tenure reviews depends on the mission of the institution and how much weight the institution places on research vs. teaching. Tenure- and nontenure-track expectations differ; however, you should always dedicate time to each of the three aspects.

Service
It may not be in the job description, but service is an important part of being an educator.

You are expected to serve on committees at any institution, but you do not have to be part of every committee. Committee participation can result in very time-consuming tasks. Both meeting preparation and attendance will take time, so be selective but participate. Manage your time wisely. Serving on a committee will introduce you to colleagues and will help you establish connections in your institution that may prove useful when requesting the reference letters for the promotion or tenure process. You will be both networking and developing professionally at the same time while you are getting known by your peers. This is the time to demonstrate your involvement in the institution.

Community service and outreach activities are also part of your service commitment. Select what you can manage efficiently but, remember, do not be over-ambitious. Make sure you have sufficient time to excel in your service, otherwise it may be detrimental for your career.

Be involved with your professional societies, such as APS. For example, APS allows you to work on outreach during Physiology Understanding (PhUn) Week (6); to volunteer to serve as a meeting mentor for one of the APS Minority Travel Fellowship Award recipients, a Porter Physiology Development and Minority Affairs Committee; to contribute to professional development activities in the Teaching Section; and so on. There are numerous Society committees where you can contribute, network, and develop professionally.

Scholarship/Research
Work on scholarship and do not forget to document it. “Publish or perish” still holds true for education-intensive careers in which you are expected to produce scholarly work.

You can get scholarship in areas other than bench research, including education and technology. This refers to research in educational outcomes, learning styles, learning technology, or writing books or chapters that fit the needs of the courses and/or discipline you are teaching.
Alternatively, you may also choose to continue conducting bench research. If you choose bench research as your scholarly activity, you may continue your previous research at your institution or establish connections with other institutions with a greater involvement in bench research.

Regardless of which scholarship activity you choose, you should set a goal, assign time to work on it, and set a time frame to achieve it, and you are on your way. Be realistic – you will not be able to dedicate as much time to scholarship as when you were a bench scientist.

You can also get double credit, since outreach activities, new technologies, and service may be turned into scholarship activities. APS provides outreach opportunities that involve teaching, such as the aforementioned PhUn Week. It is easy to get involved and also very rewarding when you see the impact in the youth. You can design a protocol to perform during the PhUn Week activities and then present it at Experimental Biology, where you will network with a group of professionals all invested in the formation of the scientists of the future. Thus, with one event, you can do service and scholarship without the double time commitment.

Measuring and documenting the impact of service and outreach activities is very valuable when establishing the success of such activities. Earn double or triple credit by implementing new technologies in the classroom that can be utilized as a teaching tool, evaluation tool, and technology tool. Results from technological innovations in the classroom can be showcased in workshops and conferences, and reported as scholarly work. This is double-dipping while growing as a rounded educator.

Teaching

There is a lot of preparation time that goes into developing a course, and do not be fooled by the myth of “it is just the first couple of years.” Developing a course is not a static but rather a dynamic process. You want to be up-to-date, finding alternative teaching methods and new technologies to keep up with your class demographics, personalities, and attitudes toward learning.

Teaching and technology are rapidly evolving, and you will have to adapt to them. You will develop your own “teaching philosophy” that will also be part of your “promotion and tenure” portfolio and will evolve with you.

Preparing to Teach

So, how do you get prepared for teaching? First, you need to learn the language of teaching (seek professional development). I highly recommend attending workshops and navigating the internet for articles on teaching theories and techniques to discover which one is yours and which one will be most efficient with your students. Buy a few good books about teaching. Get to know the school’s librarian. You will quickly learn how useful such a relationship can be for acquiring books, obtaining loans, etc.

Experiment with incorporating new teaching technologies, such as using iPads, tablets, Android platforms, hands-on, problem-based learning, and interactive devices. It can be a little time-consuming if you are not tech savvy, so seek help. Do not aim to try every single new theory that arises; some may work in your setting with your type of students and courses you teach and some may not. Also, do not try them all at once: start small and expand; otherwise, it may be a failure and not because of the methodology but due to the lack of proper preparation, time investment, and student perception.

Pearls of Wisdom

While there are more factors that may contribute to a successful transition into a full-time educator position, I included those which I thought were necessary and not so evident when I was planning the change in my career path. Changing career paths is easier said than done, but it helps to be prepared.

If you are considering an education-intensive career path, I offer four pearls of wisdom: 1) anticipate what to expect by getting information ahead of time and evaluating your new path; 2) be proactive by engaging in new activities, networking, and professional development activities while managing your time wisely; 3) effectively use your time by using one activity for multiple outcomes, double credit, addressing any of the levels you will be evaluated on, such as teaching, service, and scholarship; and 4) document your work by publishing your results and recording your activities, otherwise it will count for you, but it will not count for others in your path to success.

Using these suggestions as your guide will help you make your transition easier from the laboratory to the lecture hall. ●

Maria thanks Carmen Hinojosa-Laborde for unconditional support and help through Maria’s transition into teaching and in writing this article, and Lila LaGrange and Jessica Ibarra for thoughtful feedback.
M. Lourdes Alarcón Fortepiani, MD, PhD, is an Associate Professor in the Rosenberg School of Optometry at the University of the Incarnate Word (UIW). She received her MD and PhD from the Universidad de Murcia in Murcia, Spain, and did her postdoctoral fellowship at the University of Mississippi Medical Center. She received her appointment as a Research Assistant Professor at University of Texas Health Science Center at San Antonio and later joined Rosenberg School of Optometry. She was funded for her research on postmenopausal hypertension by American Heart Association and the National Heart Lung and Blood Institute. Dr. Fortepiani teaches graduate courses in physiology, pathology and immunology at the Optometry program. She is one of the founding faculty members of the Rosenberg School of Optometry. Passionate about shared governance, she served as Faculty Chair and worked towards the integration of the School of Optometry in UIW Faculty Senate.

References

To comment on this article or ask a question of the author, see www.the-aps.org/forum-transition.

The hearing was supposed to conclude on August 21. However, according to an account of the hearing posted by the Animal Welfare Institute (“Key Hearing in DC from August 18 to August 20” https://awionline.org/archived-action-ealerts/key-hearing-dc-august-18-august-20), the proceedings were suspended on the last day and the parties were given until September 30, 2015 to negotiate a settlement. As of this writing, no settlement agreement has been reached. Therefore, the allegations against SCBT remain just that—allegations: Final judgment must be withheld until the legal proceedings are concluded. Nevertheless, the seriousness of the USDA’s charges against SCBT demands attention.

Why Antibodies Matter
Antibodies play an increasingly important role in both clinical medicine and research. The immune system generates antibodies when it detects a foreign protein. Antibodies are proteins that tag these “invaders,” enabling other immune cells to find and destroy them. Because each antibody targets a single protein, they also have many useful applications. Antibodies can be used to diagnose and treat diseases, such as cancer (http://www.mayoclinic.org/diseases-conditions/cancer/in-depth/monoclonal-antibody/art-20047808), and autoimmune conditions including rheumatoid arthritis (http://www.webmd.com/rheumatoid-arthritis/guide/biologics) and inflammatory bowel disease (http://www.ccfa.org/resources/biologic-therapies.html). Just this past August, the U.S. Food and Drug Administration approved the antibody-based drug Repatha (evolocumab) (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm460082.htm), the second in a new class of drugs that can lower cholesterol dramatically by targeting a specific protein.

Antibodies “light up” a neurotransmitter in this sample of brain tissue (Yates laboratory, University of Pittsburgh)
Antibodies are also widely used in research to detect specific proteins in blood or tissue (see figure). Antibody production is a multi-billion dollar industry, and SCBT is a major player.

Making Antibodies

Antibody production starts by injecting animals with the protein to be tagged. One production method involves collecting blood from animals injected with the protein and then extracting the antibodies. This method produces polyclonal antibodies that are comprised of a collection of immune cells.

Another method uses hybridoma technology, which produces monoclonal antibodies that consist of only one type of immune cell. This method also begins by injecting an animal with the protein to be tagged. The next step is to remove an initial batch of antibody-producing cells from the animal’s blood and fuse them with a harmless cancer cell to produce a cell line that can generate the desired antibody in the lab. César Milstein and Georges J. F. Köhler shared the 1975 Nobel Prize in Physiology or Medicine for developing this methodology.

When performed properly, the creation of antibodies using either of these methods causes minimal pain or distress to animals.

SCBT produces antibodies with various animals, including goats and rabbits, species regulated under the AWA. The USDA sends inspectors at least once a year to visit all facilities that conduct research, teaching, or testing with regulated animal species to ensure their compliance with the AWA.

In a formal complaint filed August 7, 2015, the USDA accused SCBT of “repeated failures to provide minimally-adequate and expeditious veterinary care and treatment to animals” (https://speakingofresearch.files.wordpress.com/2015/10/usda-3rd-scbt-complaint-7-aug-2015.pdf, paragraph 5). USDA said further that the company had “demonstrated bad faith by misleading APHIS personnel about the existence of an undisclosed location” where goats were housed (2015 complaint, paragraph 6).

SCBT History of Non-Compliance Citations

This was not the first time SCBT has been cited for AWA compliance issues. According to the August 7, 2015 complaint, in July, 2005, the company paid a $4,600 penalty to resolve allegations of AWA violations from 2002 to 2004 (2015 complaint, paragraph 7). Seven years later, on July 19, 2012, USDA filed a complaint against SCBT alleging the following (see https://speakingofresearch.files.wordpress.com/2015/10/usda-1st-scbt-complaint-19-july-2012.pdf):

- SCBT failed to “establish and maintain programs of adequate veterinary care.” (2012 complaint, paragraphs III. B.-C based on findings from a July 13, 2010 inspection; 2012 complaint, paragraphs IV. C.-D, based on findings from a February 8, 2011 inspection; and 2012 complaint, paragraph VI. B. 5, based on findings from a March 6, 2012 inspection).
- During the March 6, 2012 inspection, the inspector cited SCBT for not only having “failed to establish and maintain programs of adequate veterinary care under the supervision and assistance of a doctor of veterinary medicine,” but also having “failed to provide veterinary care to animals in need of care.” (2012 complaint, paragraph VI. A).
- On July 13, 2010, the USDA inspector cited SCBT for animal care staff who were not properly trained (2012 complaint, paragraphs III. A.-B. and E.1).
- On July 24, 2007, the USDA inspector cited SCBT for improper handling of animals (2012 complaint, paragraph II.D.1.-2).

The 2012 complaint also noted various shortcomings of SCBT’s institutional animal care and use committee or “IACUC.” According to the AWA, the IACUC is required to “assess the research facility’s animal program, facilities, and procedures,” including semi-annual inspections of the facilities that identify and report “significant deficiencies” [9 C.F.R. section 2.31 (c) (1-3)]. A significant deficiency is defined in 9 C.F.R. section 2.31 (c) (3) as a problem that “is or may be a threat to the health or safety of the animals.” The IACUC is also required to review and approve animal use protocols before the research commences, to review and approve significant changes to ongoing protocols, and to ensure that animal pain and distress are minimized.

The 2012 complaint alleged these problems with SCBT’s IACUC:

- The AWA requires the IACUC to determine that the principal investigator had considered alternatives to potentially painful procedures and had ensured that the animals’ pain and distress would be minimized by providing pain-relieving drugs unless there was scientific justification to withhold them [9 C.F.R. 2.31 (d) (1) (ii)]. Alleged failures of the SCBT IACUC to do so were noted in the July 24, 2007 inspection (2012 complaint, paragraphs II. B.-C); the February 8, 2011 inspection (2012 complaint, paragraphs IV.A.-B); and the March 6, 2012 inspection (2012 complaint, paragraph VI. B. 2).
• The AWA requires the IACUC to review and approve significant changes to an ongoing activity [9 C.F.R. 2.31 (c) (7)]. On March 6, 2012, the USDA inspector cited SCBT for an alleged failure of its IACUC to review significant changes. (2012 complaint, paragraph VI.B.1).
• The AWA requires the IACUC to determine that animals are housed in conditions appropriate for their species [9 C.F.R. 2.31 (d) (1)]. On March 6, 2012, the USDA inspector cited SCBT for an alleged failure of its IACUC to ensure appropriate housing for animals at the facility. (2012 complaint, paragraph VI. B. 3).

2014 Hearing Delayed
The 2012 complaint was to have been adjudicated in 2014, but the hearing was called off 2 weeks before it was scheduled to take place. According to a July 1, 2014 notice issued by Administrative Law Judge Jill S. Clifton, the hearing was cancelled to give SCBT and USDA “ample time to meet to further their attempts to settle the case.” However, no resolution to the allegations in the complaint was announced, and, during subsequent visits, USDA inspectors identified more alleged AWA violations at SCBT.

On November 4, 2014, USDA filed a second formal complaint listing alleged violations found during seven inspections between September 26, 2012 and April 22, 2014 (https://speakingofresearch.files.wordpress.com/2015/10/usda-2nd-scbt-complaint-4-nov-2014.pdf). The second complaint charged SCBT with having “failed to allow APHIS officials to inspect” a barn known as Lake Ranch/H7 “from at least March 6, 2012, through October 30, 2012” (2014 complaint, paragraph III). This complaint also listed additional instances of failures to provide adequate veterinary care based on findings from inspections of October 31, 2012 (2014 complaint, paragraph IV. B), December 18, 2012 (paragraph V), and February 20, 2013 (paragraph VI).

The 2014 complaint also included these allegations:
• The AWA requires the IACUC to ensure that the proposed activities or significant changes in ongoing activities “will avoid or minimize discomfort, distress, and pain to the animals” [9 C.F.R. 2.31 (d) (i)]. On September 26, 2012, the USDA alleged that SCBT’s had failed to execute this requirement (2014 complaint, paragraph II. A).
• The AWA requires the IACUC to “review and approve, require modifications in (to secure approval) or withhold approval of proposed significant changes regarding the care and use of animals in ongoing activities” [9 C.F.R. 2.31 (c) (7)]. Alleged failures of the SCBT IACUC to do so were noted during the inspections of October 31, 2012 (2014 complaint, paragraph IV.A), May 14, 2013 (paragraph VII), and April 22, 2014 (paragraph IX.A–B).

• The 2014 complaint further listed problems with the housing, food, and water provided to animals. These problems were noted in the September 26, 2012 inspection [cited in paragraph II. C. 1-4 of the 2014 complaint as alleged violations of 9 C.F.R. Sections 3.125 (a), 3.129 (a), 3.131 (a) and (d)], in the October 31, 2012 inspection [cited in paragraph IV.C as alleged violations of 9 C.F.R. Sections 2.26, 2.100 (a), and 3.131 (c)], in the September 10, 2013 inspection [cited in paragraph VIII.1 as alleged violations of 9 C.F.R. Section 3.127 (a)], and in the April 22, 2014 inspection [cited in paragraph IX. C.1-3 as alleged violations of 9 C.F.R. Sections 3.56 (a), 3.54 (a), and 3.129 (a)].

USDA’S Latest Complaint
The third USDA complaint was filed August 7, 2015 and reported by the Santa Cruz Sentinel under the headline “Santa Cruz Biotech Faces Third USDA Complaint Alleging Animal Mistreatment” (http://www.santacruzsentinel.com/health/20150819/santa-cruz-biotech-faces-third-usda-complaint-alleging-animal-mistreatment-shooting-goat-in-the-head). As noted above, this complaint asserted that the company had “demonstrated bad faith by misleading APHIS personnel about the existence of an undisclosed location where respondent housed regulated animals” (2015 complaint, paragraph 6). It also alleged “repeated failure” by SCBT “to provide minimally-adequate and expeditious veterinary care and treatment to animals” (paragraph 5). In support of this allegation, subparagraphs 8 a.–n. of the complaint describe 14 instances between 2011 and 2015 where USDA inspectors observed individual goats that appeared to be in poor health and lacking appropriate veterinary care. Several of these goats were thin, appeared anemic, or seemed to be suffering from infections (subparagraphs 8 a., b., c., d., g., j., k., l., and m.), whereas others had wounds or other injuries (subparagraphs 8 e., f., and i.).

These were two of the most serious cases:
• “Respondent failed to provide adequate veterinary care to a goat (#12267) that sustained a rattlesnake bite on April 28, 2012, and following initial treatment, the goat’s condition did not improve, and the goat was not given any further treatment until its death. Specifically, the goat developed a visibly swollen jaw and chest and draining lesion and experienced a 23% weight loss (24 pounds) between April 28 and May 9, 2012. By APHIS’s inspection on May 24, 2012,
the goat was observed to be unable or unwilling to close its mouth, which, in conjunction with the goat’s other visible conditions, indicated that the goat was unable to eat normally. On June 10, 2012, the goat was observed to have labored breathing, but was not euthanized June 11, 2012.” (2015 complaint, subparagraph 8.f.).

• “Respondent failed to provide adequate veterinary care to a goat (#21135) that had been diagnosed with urinary calculi [kidney stones] and treated with ace promazine. On July 7, 2015, at approximately 10:30 a.m., APHIS inspectors found the goat in a depressed posture, unwilling to walk, and breathing heavily. Respondent had no veterinarian available to attend to this animal: the respondent’s ‘on-site’ veterinarian was on vacation, and respondent’s staff could not contact respondent's attending veterinarian, or any other veterinarian who could provide emergency care. By 3:30 p.m., the goat was agonal [gasping for breath], suffering and in distress. Respondent failed to follow its own ‘Standard Operating Procedure’ for emergency goat euthanasia, which requires veterinary approval for euthanasia. As no veterinarian was available, respondent’s staff used a captive bolt gun alone (without a sedative or secondary euthanasia injection) to effect euthanasia of the goat at approximately 4:15 p.m.” (2015 complaint, subparagraph 8.n.).

As of this writing, there has been no judicial resolution of the alleged AWA violations by SCBT. That is to say, neither a settlement between USDA and SCBT nor a continuation of the administrative hearing has been announced. (Update: On October 14, 2015, the USDA Administrative Law Judge ordered the suspended hearing to resume on April 5, 2016.)

Animal Welfare Matters
On February 14, 2014, Cat Ferguson wrote in The New Yorker about alleged animal welfare problems at SCBT, “Valuable Antibodies at a High Cost” (http://www.newyorker.com/tech/elements/valuable-antibodies-at-a-high-cost). On September 25, 2015, science writer Meredith Wadman published an opinion article in the San Jose Mercury News about the 4-day hearing the previous month. In “No Excuse for Cruelty to Goats Raised for Medical Research” (http://www.mercurynews.com/opinion/ci_28879871/meredith-wadman-no-excuse-cruelty-goats-raised-vaccines), Wadman opined that researchers were “the only constituency that Santa Cruz cares about,” and urged them to “weigh in” using their purchasing power. According to Wadman, Matt Scott of the Carnegie Institution for Science and Pamela Björkman of the California Institute of Technology have stopped buying antibodies from SCBT. Wadman concluded by asking, “Is it too much to ask other scientists to follow suit?”

Testimony from USDA Veterinary Medical Officer Marcy Rosendale was reported in an account (https://awionline.org/archived-action-ealerts/key-hearing-dc-august-18-august-20#updates) of the August 18-20, 2015 hearing posted by the Animal Welfare Institute. According to this report, Rosendale said she had not observed the same number of animal welfare problems she found at SCBT at other antibody production facilities she had visited.

There is growing recognition that, to ensure the rigor of their work, scientists need more information about the antibodies they use actually, i.e., technical specifications such as what part of the target protein the antibody binds to. Perhaps it is also time to pay more attention to how those antibodies are produced.

USDA inspections are a matter of public record, but meeting the requirements of the AWA should only be the beginning. Antibody producers should be encouraged to take additional steps to affirm their commitment to animal welfare, such as by seeking independent accreditation of their production facilities through AAALAC. The point is that researchers and antibody producers alike must find tangible ways to demonstrate a commitment to high standards of animal care.

USDA documents cited:
1. USDA - 1st SCBT complaint 19 July 2012.
2. USDA - 2nd SCBT complaint 4 Nov 2014.

Speaking of Research invites scientists to advance public understanding of how humanely conducted animal studies contribute to scientific discovery through its “Speaking of Your Research” project. See http://speakingofresearch.com/get-involved/current-campaigns/ for information about how to write and submit a short article about what your research involves; its potential future applications; why animals are essential to the work; and how you consider the welfare needs of animals.
Novo Nordisk Foundation Continues Support of APS Awards

The Foundation will provide $100,000 over 5 years toward August Krogh Lecture and Bodil Schmidt-Nielsen Award

The American Physiological Society (APS) is pleased to recognize the support of the Novo Nordisk Foundation for the August Krogh Distinguished Lectureship of the American Physiological Society’s Comparative and Evolutionary Physiology Section and the Bodil M. Schmidt-Nielsen Distinguished Mentor and Scientist Award. The foundation will provide $50,000 for each award, given in $10,000 increments over 5 years. Both awards will be presented at the Society's annual meeting at Experimental Biology.

"APS is pleased to be able to join with the Novo Nordisk Foundation to recognize the contributions made by the recipients of the August Krogh Distinguished Lecture Award and the Bodil Schmidt-Nielsen Mentor and Scientist Award to physiological understanding. Through the use of comparative approaches to study physiological function, Krogh and Schmidt-Nielsen have contributed significantly to the development of treatments and cures for disease that are celebrated through our partnership with the Novo Nordisk Foundation," says Martin Frank, executive director of APS.

The Novo Nordisk Foundation currently sponsors the August Krogh Distinguished Lectureship and has agreed to additionally support the Bodil Schmidt-Nielsen Award.

About the Awards

The August Krogh Distinguished Lecture of the APS Comparative and Evolutionary Physiology Section is awarded to a distinguished scientist who has made major and meritorious contributions to comparative and evolutionary physiology. The award recipient delivers an honorary award lecture at Experimental Biology, is recognized at the APS Comparative and Evolutionary Physiology Section’s annual business meeting, and is invited to submit the lecture for publication in the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology. The awardee also receives a $1,000 honorarium and reimbursement of meeting-related travel expenses up to $2,000.

The Bodil M. Schmidt-Nielsen Distinguished Mentor and Scientist Award recognizes an APS member who has made outstanding contributions to physiological research and has demonstrated dedication and commitment to excellence in training and mentoring young physiologists. The award recipient receives a $1,000 honorarium and reimbursement of meeting-related travel expenses up to $1,500.

The Story Behind the Awards

The Comparative and Evolutionary Exercise Physiology Section named its distinguished lectureship after August Krogh because of his contributions to comparative physiology and because his daughter, Bodil Schmidt-Nielsen, a renowned physiologist, was a past APS president and active in the section. Krogh was awarded the 1920 Nobel Prize in Physiology or Medicine for his discovery of the process by which oxygen is supplied to the tissues.

The Novo Nordisk Foundation has a unique connection to Krogh and Schmidt-Nielsen. Krogh is one of its founders. During a lecture tour in the U.S. in 1922, Krogh met with Canadian scientists Frederick Banting, Charles Best, and John Macleod, who had successfully manufactured active insulin the previous year. Krogh received permission to use the methods developed and patented by the scientists to manufacture insulin in his home country of Denmark and the surrounding Scandinavian countries. One condition had to be met, however: The insulin had to be widely available and all profits from sales used for scientific and humanitarian purposes. Krogh formed the non-profit Nordisk Insulin Laboratorium and Nordisk Insulin Foundation, which later became Novo Nordisk A/S and the Novo Nordisk Foundation, to produce insulin on a large scale.

Schmidt-Nielsen was the youngest child of August and his wife, Marie Krogh. Schmidt-Nielsen received the Novo Nordisk Foundations Jacobæus Prize, awarded to internationally recognized researchers who have made significant contributions to medical research, in 1974, the year before becoming the first woman to be elected president of APS.
"By supporting the August Krogh Distinguished Lectureship and the Bodil Schmidt-Nielsen Distinguished Mentor and Scientist Award in collaboration with the American Physiological Society, the foundation wishes to celebrate the outstanding contributions both have made to physiology, as well as recognizing their contributions to the Novo Nordisk Foundation," says Niels-Henrik Holstein-Rathlou, chief scientific officer of the Novo Nordisk Foundation.

Are you tired of being blown by the winds of a fluctuating market?

Find security through a Charitable Gift Annuity. With fixed payments for life, you no longer need to watch the markets. Support the APS and have security.

- Secure fixed payments for life
- Higher income based on age
- Charitable deduction / tax savings
- Bypass of capital gain on gift
- Tax-free payment portion
- Remainder to the APS

To learn more about Gift Annuities, feel free to visit apsgiving.org or give us a call at (301) 634-7406.

Development Office
John R. Van Ness, Ph.D.
(301) 634-7406
jvanness@the-aps.org
apsgiving.org
The Annual meeting of the Nebraska Physiological Society (NPS) was held on Saturday, October 10 at Sanford School of Medicine on the campus of University of South Dakota, Vermillion. The meeting became the 18th annual meeting of the NPS. The American Physiological Society (APS), Visual Sonics, DSI, VWR, WPI, ADInstruments, and Fisher Scientific, in part, financially supported the meeting.

Seventy-seven registered individuals, including undergraduate and graduate students, postdoctoral associates, and faculty members, participated in the scientific/educational conference. Overall, institutions from Nebraska and South Dakota were represented.

The scientific/educational sessions began with welcome and opening remarks from Doug Martin, President of the NPS from the University of South Dakota. Martin recognized Cindy Norton, Pearl Sorensen, Debra Davis, and Kim Kavan from the Department of Cellular and Integrative Physiology at UNMC and Wendy Pederson and Mike Olson from the University of South Dakota for their help in organizing the meeting.

Following Martin’s introductory remarks, Bill Yates from the University of Pittsburgh made the APS-sponsored keynote address. His presentation was entitled “Multisensory Control of Blood Pressure.” World Precision Instruments raffle drawing followed the presentation. Alicia Schiller, from University of Nebraska Medical Center, won the WPI Mouse Kit worth $250. Then there was a time for the break in which attendees were able to visit exhibitor booths and view posters. After that, the APS-sponsored Advocacy Address entitled “Research Advocacy: Why Your Voice Matters” was given by Kathryn Meier from Washington State University. The presentation was followed by the VWR Scientific raffle drawing and a coffee break. Jessica Freeling from the University of South Dakota won the VWR $250 gift certificate.

After the break, NPS oral presentations were given. These three oral presentations were selected by an NPS panel of judges before the meeting from the undergraduate, graduate, and postdoctoral categories based on merit. The first presenter was Cleofes Sarmiento, an undergraduate student from Wayne State College. His talk was entitled “Methotrexate Directly Scavenges Superoxide Generated by Xanthine Oxidase.” The second presenter was Michael Price, a graduate student from University of Nebraska Medical Center. His talk was entitled “Alcohol-Induced S-Nitrosylation Drives Protein Phosphatase 1-Dependent Motile Airway Cilia Dysfunction.” The postdoctoral presenter was Priyanka Prathipati, from University of Nebraska Medical Center. Her talk was entitled “Ablation of MMP9 Alleviates Mitophagy and Mitigates Cardiac Dysfunction in Diabetes.”

The afternoon sessions commenced with the poster competition for undergraduate, graduate, and postdoc posters. Overall 21 posters, including 9 faculty posters, were presented during the 2-hour period allocated to poster viewing.

After the poster presentations, Bill Yates, Editor, Journal of Neurophysiology; Kathryn Meier, Associate Editor, Journal of Pharmacology and Experimental Therapeutics; and Irving Zucker, Editor, American Journal of Physiology – Heart and Circulatory coordinated a publication and ask-the-expert workshop. The workshop was very well attended and

NPS Oral Presentation Winners

- Cleofes Sarmiento, undergraduate, Wayne State College
- Michael Price, graduate, UNMC
- Priyanka Prathipati, postdoctoral, UNMC
created a great deal of discussion and interest among the trainees as well as faculty.

The afternoon session concluded with student awards and recognitions for oral presentations and posters. The award recipients received certificates and monetary awards of $200. The winner of undergraduate poster competition was Sarah Hill from Midland University. The winner of the graduate poster competition was Sigurd Hartnett from the University of South Dakota. The postdoctoral winner for poster competition was Bryan Hackfort, from the University of Nebraska Medical Center.

At the closing of the conference, the NPS business meeting was called to order and chaired by NPS President Doug Martin. An update on outreach activities over the past year was reported by Alicia Schiller, from the University of Nebraska Medical Center. NPS Secretary/Treasurer Neeru Sharma, from the University of Nebraska Medical Center, then provided the treasurer’s report. Martin presented the Past-President Award to Carol Fassbinder, from the Creighton University, for her service to the NPS. The NPS council members for 2014-2015 were then announced. President Yi-Fan-Li, University of South Dakota; Past-President Doug Martin, University of South Dakota; President-Elect Matthew Zimmerman, University of Nebraska Medical Center; Councilor Evelyn Schlenker, University of South Dakota; Lie Gao, University of Nebraska Medical Center; Adam Case, University of Nebraska Medical Center; Student Councilor Michael Price, University of Nebraska Medical Center; Secretary/Treasurer Neeru Sharma, University of Nebraska Medical Center; Executive Director Cindy Norton, CAP-OM, University of Nebraska Medical Center; CAC Representative Harold Schultz, University of Nebraska Medical Center. Afterward, Yifan Li, discussed new business and vision for the 2016 meeting of NPS. The meeting was then adjourned.

Neeru Sharma, PhD
Secretary/Treasurer

NPS Poster Award Winners

Sarah Hill, undergraduate, Midland University
Sigurd Hartnett, undergraduate, University of South Dakota
Bryan Hackfort, postdoctoral, University of Nebraska Medical Center

Posters Competition

Erika Boesen, Sabrina Schnack
Peter Pellegrino, Bill Yates
Yanqing Wang, Kaushik Patel
Experimental Biology

EB 2016 Distinguished Lectures

Physiology in Perspective – Walter B. Cannon Memorial Award Lecture

Amira Klip
Hospital for Sick Children, Toronto
Muscle-Immune Cell Crosstalk in the Genesis of Insulin Resistance
Saturday, April 2, 2016, 5:30 PM

Henry Pickering Bowditch Award

Sean D. Stocker
Penn State Coll. of Med.
Sodium-Sensing Central to Salt-Sensitive Hypertension
Sunday, April 3, 2016, 5:45 PM

Ernest H. Starling Distinguished Lecturer of the APS Water and Electrolyte Homeostasis Section

David M. Pollock
Univ. of Alabama at Birmingham
Endothelin as a Master Regulator of Whole Body Sodium Homeostasis
Sunday, April 3, 2016, 4:15 PM

Carl Ludwig Distinguished Lecturer of the APS Neural Control and Autonomic Regulation Section

Benedito Honorio Machado
Sch. of Med. Ribeirao Preto-USP
Neurogenic Hypertension and the Secrets of Respiration
Monday, April 4, 2016, 8:00 AM

Claude Bernard Distinguished Lecturer of the APS Teaching of Physiology Section

Barbara E. Goodman
Univ. of South Dakota Sanford Sch. of Med.
An Evolution in Student-Centered Teaching
Sunday, April 3, 2016, 10:30 AM

Solomon A. Berson Distinguished Lecturer of the APS Endocrinology and Metabolism Section

Gerald I. Shulman
HHMI, Yale Univ. Sch. of Med.
Cellular Mechanisms of Insulin Resistance: Implications for Obesity, Type 2 Diabetes, and the Metabolic Syndrome
Monday, April 4, 2016, 10:30 AM

Hugh Davson Distinguished Lecturer of the APS Cell and Molecular Physiology Section

Paul A. Insel
Univ. of California, San Diego
GPCRomics: Discovering New Ways Cells Communicate with One Another and the Outside World
Sunday, April 3, 2016, 2:00 PM

Edward F. Adolph Distinguished Lecturer of the APS Environmental and Exercise Physiology Section

Scott K. Powers
Univ. of Florida
Exercise: Teaching Myocytes New Tricks
Monday, April 4, 2016, 2:00 PM
Joseph Erlanger
Distinguished Lecturer of the APS Central Nervous System Section
Quentin J. Pittman
Univ. of Calgary
Immune Stress and the Brain: Synaptic Substrates of Sickness
Monday, April 4, 2016, 3:15 PM

Robert M. Berne
Distinguished Lecturer of the APS Cardiovascular Section
Stephanie W. Watts
Michigan State Univ.
Oh, the Places You’ll Go! My Many Colored Serotonin (Apologies to Dr. Seuss)
Tuesday, April 5, 2016, 2:00 PM

Carl Gottschalk
Distintuished Lectureship of the APS Renal Section
David H. Ellison
Oregon Hlth. Sci. Univ.
Aldosterone and Hypertension: What’s the DCT Got to Do With It?
Monday, April 4, 2016, 3:15 PM

August Krogh Distinguished Lecturer of the APS Comparative and Evolutionary Physiology Section
Supported by Novo Nordisk Foundation
Jon F. Harrison
Arizona State Univ.
Physiological and Evolutionary Interactions Among Body Size, Metabolic Rate and Oxygen
Tuesday, April 5, 2016, 3:15 PM

Julius H. Comroe, Jr.
Distinguished Lecturer of the APS Respiration Section
Gary C. Sieck
Mysteries and Maladies of Mitochondrial Dynamics
Tuesday, April 5, 2016, 10:30 AM

Horace W. Davenport
Distinguished Lecturer of the Gastrointestinal and Liver Physiology Section
Bishr Omary
Univ. of Michigan
The Intermediate Filament Cytoskeleton: From Bench to Bedside
Tuesday, April 5, 2016, 3:15 PM

APS Nobel Prize Lecture
Roger Tsien
Howard Hughes Med. Inst., Univ. of California, San Diego
Molecules Against Cancer or for Very Long-Term Memory
Wednesday, April 6, 2016, 4:45 PM
Upcoming EB Symposia

Mark your calendars for professional development symposia at Experimental Biology 2016!

Keep Your Eye on the Ion – A Refresher Course on Ionic Homeostasis and Systems Physiology (Medical Education Refresher Course)

Saturday, April 2:
8:00 AM - 12:00 PM

Get an update on content from leading experts in the field: Regulation of Sodium Homeostasis and Hypertension (John Osborn, U Minnesota), Regulation of Potassium Homeostasis and Renal Disease (Biff Palmer, UT Southwestern Medical Center), Acid Base Disturbances and Regulation of Potassium (L. Lee Hamm, Tulane U School of Medicine), and Cardiac Ischemia: Ionic Currents and the ECG (Richard Klabunde, Marian U College of Osteopathic Medicine).

the-aps.org/refresher-ion
San Diego Convention Center, Rm. 24

Leadership and Management Skills: What You Might Not See in Your CV (Career Symposium)

Tuesday, April 5:
10:30 AM - 12:30 PM

A successful career in scientific research is filled with leadership and management opportunities. The challenge is in understanding what kind of leader you are, how you lead/manage, seeing the possibilities, and leading well. Learn how to explore, identify, and apply inherent and learned leadership/management skills.

the-aps.org/leadership
San Diego Convention Center, Rm. 25B

Negotiating for Success! (Mentoring Symposium)

Monday, April 4:
3:15 - 5:15 PM

Negotiation is both a skill and an art. Understanding your strengths and weakness will help you to best promote yourself and succeed in interviews and getting the position you are aiming for. Learn how to use the right tools and the right approach to succeed in any discipline.

the-aps.org/negotiating
San Diego Convention Center, Rm. 25C

Now Hiring PhD’s: Post Doc Not Required (Trainee Symposium)

Wednesday, April 6:
10:30 AM - 12:30 PM

It is critical for trainees to become exposed to various career paths available in today’s job market for PhD holders and to understand the skills necessary to attain those job opportunities. Learn about 1) various career options that do not require a postdoc; 2) how to get the experience and skills needed for those careers; and 3) creative ways that graduate programs prepare trainees for diverse careers.

the-aps.org/hiring
San Diego Convention Center, Rm. 22
Experimental Biology 2016
April 2–6, 2016, San Diego, CA

PHYSIOLOGY PLATFORM SESSIONS

Saturday, April 2, 2016

<table>
<thead>
<tr>
<th>Room</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballroom 20A</td>
<td>5:30 PM–6:30 PM Cannon Award Lecture Klip</td>
</tr>
<tr>
<td>Room 22</td>
<td>3:00 PM–5:00 PM NCAR Section Award Session Data NCARnation</td>
</tr>
<tr>
<td>Room 23</td>
<td>9:30 AM–11:30 AM
MCS Symp Microcirculation: President’s Symposium: Blood Cell-Microvessel Interactions Rumbaut
1:00 PM–3:00 PM
MCS Symp Signal Integration and Microcirculatory Blood Flow Control: Making Parts Whole Using a Network Approach Jackson
3:30 PM–5:30 PM
MCS Symp Advances in Microvascular Permeability/Glycocalyx Breslin</td>
</tr>
<tr>
<td>Room 24</td>
<td>8:00 AM–12:00 PM
Education Committee Refresher Course
Keep Your Eye on the Ion. Refresher Course on Ionic Homeostasis and Systems Physiology Rodenbaugh/Scrogin
2:15 PM–5:15 PM
WEH Section Award Session WEH Trainee Award Finalists and Data Diuresis</td>
</tr>
<tr>
<td>Room 25A</td>
<td>1:00 PM–5:15 PM PGG Special Session 3rd Annual APS Physiological Genomics Group Conference</td>
</tr>
<tr>
<td>Room 25B</td>
<td>1:00 PM–3:00 PM
ACE Committee Symp Having Trouble with Your IACUC? Henegar</td>
</tr>
<tr>
<td>Room 25C</td>
<td>3:00 PM–5:00 PM Communications Committee Symp Setting the Record Straight for Science: How to Write to Local and National News Outlets Goodman</td>
</tr>
<tr>
<td>Room 26</td>
<td>1:00 PM–3:00 PM
APS Workshop Advanced Microscopy Techniques for the Study of Physiology Kolar/Yosten
3:15 PM–5:15 PM
APS Workshop Novel Methods to Perturb Genes for Physiological Examination Andresen/Joe</td>
</tr>
</tbody>
</table>
Saturday, April 2, 2016, cont.

| Room 27 | 6:00 PM–8:00 PM | MCS Special Session
Microcirculatory Society Reception and Poster Discussion |
| Room 28AB | 9:00 AM–5:00 PM | ETG Conf
Pre-EB Meeting of the Epithelial Transport Group Young Investigators Symposium
Levi |

Sunday, April 3, 2016

| Room | 8:00-10:00 AM | 10:30 AM-12:30 PM | 3:15-5:15 PM |
| Ballroom 20A | President’s Symp Series – Physiological Mechanisms Responsive to Behavioral and Environmental Challenges
Physiological Processes Underlying Organ Injury in Alcohol Abuse
Murray/Souza | Integrative Physiol Symp
Early Life Stress and Sex-Specific Manifestations of Cardio-Respiratory Dysfunction: Insight from Microglial Cells
Baldy/Dasinger | 5:45 PM–6:45 PM
Bowditch Award Lecture
Stocker |
| Room 22 | NCAR Section FT
NCAR Young Investigator Awards
Ramchandra/Limberg | PIC Symp
Metabolic Syndrome and the Pathway of Drug Development: From Bench to Bedside
Zahner/Cornelius | Hypoxia Group FT
Chemical Control of Autonomic Function in Health and Disease
Forster |
| Room 23 | E&M Section Symp
New Insights into Exercise and Insulin Sensitivity
Richter/McConell | CV Section FT
Wiggers Award FT
Meininger | 3:15 PM–4:15 PM
MCS Landis Award Lecture
Segal
4:30 PM–5:30 PM
MCS Business Meeting and Reception |
| Room 24 | CV Section Symp
Physiological and Pathological Aspects of Hypertrophic Cardiomyopathy
Steinberg/Sadayappan | 10:30 AM–11:30 AM
Teaching Section Bernard Lecture
Goodman | 2:00 PM–3:00 PM
CAMP Section Davson Lecture
Insel
3:15 PM–4:15 PM
WEH New Investigator Award Lecture
4:15 PM–5:15 PM
WEH Section Starling Lecture
Pollock |
Sunday, April 3, 2016, cont.

<table>
<thead>
<tr>
<th>Room 25A</th>
<th>WEH Section FT</th>
<th>CAMP Section FT</th>
<th>CAMP Section Symp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neural and Hormonal Modulation of Fluid Balance and Ion Homeostasis in Health and Disease Banek/Lob</td>
<td>Microbiota or Nutrition and Host Cell Signaling Worrell/Butterworth</td>
<td>Orai/STIM1 Physiology and Pathophysiology Muallem/Delpire</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room 25B</th>
<th>Teaching Section Symp</th>
<th>PGG Symp</th>
<th>CEP Section FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standing on the Edge: Transformational Teaching and Learning Beyond the Classroom Walls Crecelius/Taylor</td>
<td>Omics Applications in Metabolic Physiology Olfert/Adams</td>
<td>Comparative and Evolutionary Physiology Trainee Driven FT Warren/Ivy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room 25C</th>
<th>MBG FT</th>
<th>Resp Section Symp</th>
<th>Resp Section FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muscle Dysfunction in Diabetes: Cause(s) or Effect(s)? Brozinick</td>
<td>Macrophages: A Double-Edged Sword in Inflammatory Tissue Injury Mehta/D’Alessio</td>
<td>Intermittent Hypoxia: Respiratory and Cardiovascular Control and Beyond Solomon/Fields</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room 26</th>
<th>CV Section Symp</th>
<th>NCAR Section Symp</th>
<th>NCAR Section Symp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microbiome in Cardiopulmonary Diseases: From Association to Causation Shenoy/Pluznick</td>
<td>Bridging the Gap between Pre-clinical and Clinical Evidence: Treating Cardiovascular Diseases with Autonomic Modulation Therapies Ruble/Sunagawa</td>
<td>The Brain-Gut Axis: Microbiome in Neural and Metabolic Diseases Zubcevic/Raizada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room 27</th>
<th>Renal Section FT</th>
<th>Renal Section FT</th>
<th>EEP Section Symp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advances in Kidney Physiology Ortiz</td>
<td>Renal Section Young Investigator Symp: Novel Signaling and Transport Mechanisms in the Collecting Duct Prieto-Carrasquero/Peti-Peterdi</td>
<td>Emerging Mechanisms of Thermoegulation and Metabolic Control Clanton/Periasamy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room 28A</th>
<th>PGG Award Session</th>
<th>ETG FT</th>
<th>EEP Section FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physiological Genomics Trainee Highlights</td>
<td>Epithelial Physiology and Transport I Bomberger/Bradbury</td>
<td>What do Both Mitochondrial Protein Turnover and Mitochondrial Function Tell Us About Exercise and Aging? Miller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room 28B</th>
<th>TIPG FT</th>
<th>CNS Section Symp</th>
<th>CV Section FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Translational Physiology Showcase: Focus on the Effects of Alcohol Abuse, Behavior, Diet, Nutrition, and Extreme Environmental Conditions on Physiology Young/Bikman</td>
<td>The Spinal Control of Motor Output: From Neural Circuits to Mechanics Frigon/Nichols</td>
<td>Sex Disparities in Cardiovascular Function and Remodeling Goulopoulou</td>
</tr>
</tbody>
</table>
Monday, April 4, 2016

<table>
<thead>
<tr>
<th>Room</th>
<th>8:00-10:00 AM</th>
<th>10:30 AM-12:30 PM</th>
<th>3:15-5:15 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballroom 20A</td>
<td>TAC FT
Sex Differences in Health and Disease
Ilatovskaya/Banek</td>
<td>APS President’s Symp Series. Physiological Mechanisms Responsive to Behavioral and Environmental Challenges
Dietary Influences on Physiological Control Mechanisms – How Much, When and What
Anthony</td>
<td>Integrative Physiol Symp
Role of Epithelium in Innate Defence: More than a Barrier
Garnett</td>
</tr>
<tr>
<td>Room 22</td>
<td>CV Section Symp
Novel Insights in Vascular Disease in Metabolic Syndrome
Weber/Stepp</td>
<td>WEH Section Symp
Hydration Physiology: From Cells to Systems and Clinical Health Outcomes
Armstrong</td>
<td>E&M Section Symp
The Control of Skeletal Muscle Atrophy in Responses to Disuse: Clinical/Pre-Clinical Contentions and Fallacies of Evidence
Atherton/Lang</td>
</tr>
<tr>
<td>Room 23</td>
<td>E&M Section FT
Metabolic Consequences of Exercise
Steiner/Yosten</td>
<td>EEP Section Symp
Exercise and Cancer: From Cardiovascular Outcomes to the Tumor Microenvironment
Behnke/Jones</td>
<td>3:15 PM–4:15 PM
CNS Section Erlanger Lecture
Pittman
4:15 PM–5:15 PM
CNS Section
Erlanger Lecture MiniSymp
Pittman/Stocke</td>
</tr>
<tr>
<td>Room 24</td>
<td>8:00 AM–9:00 AM
NCAR Ludwig Lecture
Machado</td>
<td>10:30 AM–11:30 AM
E&M Section Berson Lecture
Shulman</td>
<td>2:00 PM–3:00 PM
EEP Section Adolph Lecture
Powers
3:15 PM–4:15 PM
Renal Section Gottschalk Lecture
Ellison</td>
</tr>
<tr>
<td>Room 25A</td>
<td>GL Section FT
Innate Immune Functions of Epithelial Cells
Frey</td>
<td>CAMP Section FT
Cell Signaling: Proteins, Pathways, and Mechanisms
Rao/Rodrigues</td>
<td>PGG FT
Environmental Regulators on Microbiome-Mediated Immunity and Inflammation: Genetic and Epigenetic Implications
Claycombe/Meydani</td>
</tr>
<tr>
<td>Room 25B</td>
<td>Teach Section FT
Innovations in Teaching Physiology
Golden</td>
<td>Resp Section FT
Environmental Exposures, Oxidative Stress, and Lung Disease
Waters</td>
<td>Teach Section Symp
Scientific Foundation for Clinical Practice: More Than a Pile of Facts
Alarcón Fortepiani/Sanchez-Diaz</td>
</tr>
<tr>
<td>Room 25C</td>
<td>WEH Section FT
Hypertension: Developing Concepts
O’Connor/Ho</td>
<td>CEP Section FT
Avian Osmoregulation: Unique Solutions, Unanswered Questions
Sweazea/Goldstein</td>
<td>WIP Committee Symp
Negotiating for Success!
Mathis/Sweazea</td>
</tr>
<tr>
<td>Room 26</td>
<td>EEP Section Symp
Modulatory Influence of Exercise on Physiological Function with Aging
Seals/Booth</td>
<td>GIL Section Symp
Neuro-Immune Crosstalk in the Gut
Gulbransen/Lomax</td>
<td>Hypoxia Group Symp
Transcriptional and Epigenetic Regulation of Cardio-Respiratory Homeostasis under Hypoxia
Semenza/Ramirez</td>
</tr>
</tbody>
</table>
Monday, April 4, 2016, cont.

<table>
<thead>
<tr>
<th>Room</th>
<th>CV Section FT</th>
<th>Renal Section Symp</th>
<th>NCAR Section FT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Room 28A</th>
<th>CV Section FT</th>
<th>ETG FT</th>
<th>CV Section FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 28A</td>
<td>Cerebrovascular Dysfunction and Reactive Nitrogen Species Katakam/Pollock</td>
<td>Epithelial Physiology and Transport II Hamilton/Helms</td>
<td>Cardiopulmonary Effects of Environmental Stressors Wold</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room 28B</th>
<th>Publications Committee Symp</th>
<th>CV Section Symp</th>
<th>Resp Section FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room 28B</td>
<td>Publishing 101: How to Get Your Work Published and Avoid Ethical Minefields Sigmund/Scheman</td>
<td>Thyroid Hormone Modulation of Cardiac Function and Remodeling: Bench to Bedside Portman/Gerdes</td>
<td>Inflammation and Its Influence on Lung Function and Respiratory Control Wilson/Wilson</td>
</tr>
</tbody>
</table>

Tuesday, April 5, 2016

<table>
<thead>
<tr>
<th>Room</th>
<th>8:00-10:00 AM</th>
<th>10:30 AM-12:30 PM</th>
<th>3:15-5:15 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballroom 20A</td>
<td>PG Journal and ASHG Symp Beyond GWAS: Attaching Physiology to the Genome Munroe/Wiltshire</td>
<td>President’s Symp Series Symp Physiological Mechanisms Responsive to Behavioral and Environmental Challenges</td>
<td>Integrative Physiol Symp Mechanobiology of Fibrosis across Organ Systems Tschumperlin</td>
</tr>
<tr>
<td>Room 22</td>
<td>8:00 AM–10:00 AM</td>
<td>CV Section Symp Shear Stress-Induced Mechanotransduction in Endothelial Cells: Implications for Vascular Health and Adaptations to Physical Activity</td>
<td>CV Section FT Metabolic Regulation of Cardiac Function in Diabetes: Epigenetics and Posttranslational Mechanisms Wende/Chatham</td>
</tr>
<tr>
<td>Room 23</td>
<td>8:00 AM–10:00 AM</td>
<td>CV Section Symp New Insights into the Role of Autophagy in Cardiac Disease Mellor/Jones</td>
<td>3:15 PM–4:15 PM CEP Section Krogh Lecture Supported by Novo Nordisk Foundation Harrison</td>
</tr>
<tr>
<td>Room 24</td>
<td>10:30 AM–11:30 AM</td>
<td>2:00 PM–3:00 PM</td>
<td>3:15 PM–4:15 PM</td>
</tr>
<tr>
<td>Room 25A</td>
<td>Respiration Section Comroe Lecture Sieck</td>
<td>CV Section BerneLecture Watts</td>
<td>GIL Section Davenport Lecture Omary</td>
</tr>
<tr>
<td>Room 25A</td>
<td>WEH Section FT Origins of Adult Cardiovascular and Metabolic Disease Loria/Gillis</td>
<td>CAMP Section FT Ion Channels and Transporters in Health and Disease Kravtsov/Thai</td>
<td>CAMP Section Symp Ion, Water, and Gas Movements through the Brain in Health and Disease: Putting it All Together O’Donnell/liff</td>
</tr>
</tbody>
</table>
Room 25B

MBG FT
Skeletal Muscle Peroxisomal-Mitochondrial Interactions in Health and Disease
Cortright/Noland

Careers Committee Symp
Leadership and Management Skills: What You Might Not See in Your CV
Schnackenberg/Richards-Williams

E&M Section FT
Hormones and Reproduction
Samson

Room 25C

History Group Symp
A Broad History of Temperature Regulation
Leon/Kirkton

CEP Section Symp
Context Dependence of Cardiorespiratory Physiology: Temperature Effects, Circadian Cycles, and System Interdependence
Santin/Hartzler

MBG Symp
Gene Regulation in Skeletal Muscle
Nader

Room 26

CV Section FT
2016 Gabor Kaley Lecture FT
Nourshargh

EEP Section Symp
Mechanisms of Neuromuscular Junction Destabilization and Fragmentation in Aging Skeletal Muscle
Jackson/Hepple

WEH Section FT
Cross-Talk Between Salt and Other Factors in Hypertension
Li

Room 27

Renal Section FT
Advances in Renal Pathology and Disease
Welling

Renal Section Symp
Still Unraveling the Mysteries of the Kidney with Isolated Tubules after All These Years
Sands/Brooks

CNS Section FT
Novel Mechanisms at the Level of the Solitary Tract Nucleus (NTS)
McDougall

Room 28A

CNS Section Symp
Building Neural Circuits: Wiring and Experience
Van Hooser/Cang

NCAR Section FT
The Mind Matters: Psychology as an Overlooked Variable in Autonomic Physiology
Wehrwein/Carter

EEP Section Symp
Mechanisms Regulating Skeletal Muscle Mass
Bodine

Room 28B

NCAR Section FT
Neural Control of Inflammation-Mediated Hypertension
Lazartigues

GIL Section FT
Chronic Liver Diseases Modulated by Transcriptional and Translational Mechanisms
Wang/Machida

Resp Section Symp
Neurostimulation to Restore Breathing with Neuromuscular Disorders
Mitchell/Streeter

Marina Ballroom DE

1:00 PM–2:00 PM
History of Physiology Group Lecture
Severinghaus

Room 33ABC

3:00 PM–5:00 PM
2014 Tang Prize in Biopharmaceutical Science
Honjo
<table>
<thead>
<tr>
<th>Room</th>
<th>8:00-10:00 AM</th>
<th>10:30 AM-12:30 PM</th>
<th>2:30-4:30 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballroom 20A</td>
<td></td>
<td></td>
<td>4:45 PM–5:45 PM APS Nobel Prize Lecture Tsien</td>
</tr>
<tr>
<td>Room 22</td>
<td>CV Section FT New Approaches for Induction of Arteriogenesis Rocic</td>
<td>TAC Symp Now Hiring PhD’s: Post Doc Not Required Hernandez-Carretero/Dougherty</td>
<td></td>
</tr>
<tr>
<td>Room 23</td>
<td>Pan-American Societies Symp Cardiac Mitochondria: More than an ATP Powerplant Antunes/Villa-Abrille</td>
<td>AFMR Symp Emerging New Mechanism in Alcoholic Liver Disease Liangpunsakul</td>
<td></td>
</tr>
<tr>
<td>Room 24</td>
<td>Integrative Physiol Symp Reprogrammed Cells as Models for Disease Chilian/Zhang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 25A</td>
<td>GIL Section Symp Mechanisms Underlying Host-Microbial Interactions in Pathophysiology of Diseases, Using Gut Organoids and Animal Models Dudeja/Sun</td>
<td>CAMP Section Symp Recent Advances in the Structure and Function of Epithelial Tight Junctions Rao/Vetrano</td>
<td>AFMR Symp Natural Products: Biological Effects and Therapeutic Potential in Human Disease Prabhakar/Wu</td>
</tr>
<tr>
<td>Room 25B</td>
<td>Resp Section Symp Microtubules in Lung Disease and Recovery Birukova/Stevens</td>
<td>Resp Section FT Redundancy and Plasticity in Respiratory Control Bavis/Nichols</td>
<td></td>
</tr>
<tr>
<td>Room 25C</td>
<td>CNS Section FT Breathing Disturbances in Neurological Disorders Moreira</td>
<td>CEP Section Symp Comparative Physiology of Skeletal Muscle – Novel Studies in Plasticity and Structure Rourke/Horner</td>
<td>NDOGS Special Session ORPHEUS – Developing Best Practices for Graduate Education in Europe Barnett</td>
</tr>
<tr>
<td>Room 26</td>
<td>TPIG Symp Novel Molecular Targets and Therapeutic Approaches in Myocardial Infarction and Heart Failure Koch/Sharp</td>
<td>CV Section FT Endothelial Dysfunction in Diabetes Dokken/Meininger</td>
<td></td>
</tr>
<tr>
<td>Room 27</td>
<td>Renal Section Symp Renal Potassium Sensing Mechanisms: A New Paradigm for Potassium Secretion Ellison/Subramanya</td>
<td>ETG Symp Compartmentalization of Signal Transduction in Epithelial Cell Biology Fenton/Rieg</td>
<td></td>
</tr>
<tr>
<td>Room 28A</td>
<td>EEP Section FT Hot, Cold, and Old: Aging and the Physiology of Thermal Stress Schlader/Gagnon</td>
<td>EEP Section FT Recovery from Exercise and Translating Post-Exercise Hypotension Baynard</td>
<td></td>
</tr>
<tr>
<td>Room 28B</td>
<td>E&M Section Symp Role of Oxytocin in the Control of Energy Homeostasis Blevins/Samson</td>
<td>NCAR Section FT Actions and Interactions of Baroreflexes, Chemoreflexes and Metaboreflexes in Autonomic Regulation and Heart Disease Amann/Fadel</td>
<td></td>
</tr>
</tbody>
</table>
The APS highlighted physiology for middle school science teachers and administrators at the annual Association for Middle Level Education (AMLE) Conference held in Columbus, OH from October 14th to 17th. This was the sixth year for an APS presence at the AMLE Conference, which is attended by over 4,000 teachers, administrators, and counselors from across the country.

Teachers were as excited as ever for a science society’s presence, since so few opportunities are available for science-related materials at this meeting. The APS booth was extremely busy and well received with many questions about the APS Life Science Teaching Resource Community, age-appropriate careers materials such as the career trading cards, and the new online Six Star Science Professional Development Fellowship. Next year’s conference will be held in Austin, TX from October 9th to 12th.

APS also promoted physiology for K-12 biology teachers at the National Association of Biology Teachers (NABT) Conference in Providence, RI. The annual national conference, held the second week of November, attracts middle and high school teachers as well as 2- and 4-year college faculty from across the nation. APS sponsored an exhibit booth and featured speaker as well as presenting two hands-on workshops that highlighted how to transform cookbook labs, the APS Life Science Teaching Resource Community (www.LifeSciTRC.org), career materials, and K-12 outreach.

In a hands-on workshop led by Margaret Shain Stieben (Program Manager, K-12 Education Programs), attendees explored how to transform cookbook labs into ones that 1) actively engage students in developing hypotheses and methods and exploring concepts; 2) address a wide variety of learning styles and cultures; and 3) effectively integrate internet resources. During this standing-room-only workshop, sample labs were rewritten and lessons/labs that are currently available in the APS Life Science Teaching Resource Community were discussed.

Patricia Halpin, University of New Hampshire, presented a second workshop, “Physiology: A How-To for K-12 Outreach in an Undergraduate Setting.” This session was a primer for undergraduate educators on how to establish K-12 outreach programs for both personal and institutional benefit. Three programs were discussed, followed by a hands-on demo and a question-and-answer session.

Interest in undergraduate programs was a highlight at the exhibit booth throughout the 3-day conference as resources and program materials were provided and discussed with community college attendees. Next year’s conference will be held in Denver, CO. For further information, please contact Margaret Shain Stieben, Program Manager, K-12 Education Programs (mshain@the-aps.org).

This year’s sponsored speaker was APS member Donald Jackson, Brown University. Jackson presented “Living Without Oxygen – Lesson from Animal Physiology,” an entertaining and informative talk that shared what he learned studying anaerobic metabolic end-products, conserving metabolic substrates, and protecting the heart and brain from irreversible damage in freshwater turtles, such as the painted turtle, and the crucian carp, a close relative of the goldfish.
More than 60 Anatomy and Physiology educators from the Eastern United States gathered on October 3rd for the Eastern Regional Human Anatomy and Physiology (HAPS) conference. This year, the conference was hosted by local organizer, Terry Thompson, from Wor-Wic Community College in Salisbury, Maryland.

APS was pleased to sponsor the workshop “Student Centered Learning in Physiology Courses.” The workshop was presented by APS members Erin Keen-Rhinehart (Associate Professor, Susquehanna University, Selinsgrove, PA) and Jan Foster (Assistant Professor, North Greenville University, Tigerville, South Carolina).

This workshop introduced various evidence-based student-centered teaching methods. Attendees shared their interests in implementing strategies, such as team-based learning, problem-based learning, and online polling in their physiology classes. Speakers shared information about available APS resources to support excellence in physiology education. For example, speakers informed attendees about the Life Science Teaching Resource Community (www.lifescitrc.org), an online repository of more than 7,000 peer-reviewed teaching resources and community interaction tools. In addition, the workshop included information about the Physiology Education Community of Practice (PECOP; www.lifescitrc.org/PECOP), which was formed as an outgrowth of the first bi-annual APS Institute on Teaching and Learning in 2014.

The workshop was well received, garnering participation from approximately one-third of the conference attendees, and it provided an engaging presentation and a lively interactive discussion. Participation in the workshop was supported by NSF RCN-UBE Incubator Grant DBI-1346220.

Erin Keen-Rhinehart is an Associate Professor at Susquehanna University in Selinsgrove, PA. Her research program investigates the effects of neonatal energy restriction on the programming of adult appetite regulatory systems and reproductive function. Erin is enthralled by coming up with new ways to teach students challenging concepts interactively. She also enjoys showing students how seemingly complicated scientific information applies to their everyday life. She routinely has undergraduates working in her lab conducting research. She was awarded a Faculty Early Career Development Grant by the National Science Foundation recently. Erin was a 2014 PECOP Fellow.

Jan Foster is an Assistant Professor at North Greenville University in Tigerville, SC. She regularly teaches Human Anatomy and Physiology, Histology, and Advanced Physiology. Jan received her PhD in Biomedical Sciences from the Medical College of Georgia in Augusta, GA. She regularly incorporates student-centered learning activities in all of her classes. Additionally, she recently designed a new course, Human Advanced Physiology, to be an entirely primary literature-based student-led discussion course. Jan was a 2014 PECOP Fellow.
APS at SACNAS 2015

The APS was an exhibitor at the 2015 Society for the Advancement of Chicanos and Native Americans in Science (SACNAS) annual meeting at the Gaylord National Resort & Convention Center in National Harbor, MD from October 29 to 31. The theme this year was “Interdisciplinary Collaboration: The Role of Diversity in STEM Innovation.”

The APS, represented by Rolando J.J. Ramirez (University of Akron and Porter Physiology Development and Minority Affairs Committee Member), Nicholas Aguirre (University of California, Davis and K-12 Minority Outreach Fellow), and Brooke Bruthers (Senior Program Manager, Diversity Programs), staffed the exhibit booth.

The SACNAS National Conference is designed to motivate, inspire, and engage participants to achieve their highest goals in pursuing education and careers in all disciplines of science, technology, engineering, and mathematics from across the country. Conference programming is specifically tailored to support undergraduate and graduate students, postdoctoral researchers, and career professionals at each transition stage of their career as they move toward positions of science leadership. The conference showcases cutting-edge science and features mentoring and training sessions for students and scientists at all levels. Nearly 4,000 attended the conference, and more than 300 exhibits shared training, research, grad school, and job opportunities. For more information about the SACNAS National Conference, visit www.sacnas.org. For more information on APS diversity programs, visit www.the-aps.org/diversity.

Missed Experimental Biology 2015?
OR
Attended EB2015 but missed APS career/trainee/mentoring/education sessions?

You can still attend them!
Listen to the talks and view the PowerPoint presentations for:

- Refresher Course
 It's All in Your Head – A Refresher Course on the Brain and Systems Control
thethe-aps.org/refresher-brain

- Career Symposium
 Resilience is Power: Dealing with the Ups and Downs of Your Scientific Career
thethe-aps.org/resilience

- Mentoring Symposium
 Mentoring for Diverse Careers: Mentor and Protégé Perspectives
thethe-aps.org/mentoringdiversecareers

- Trainee Symposium
 Scientists as Supervisors: Hiring, Firing and Beyond
thethe-aps.org/supervisor
APS Awards and Fellowships

David S. Bruce Awards for Undergraduates in Research

Application Deadline: January 12, 2016

the-aps.org/bruce

The David S. Bruce Undergraduate Awards are presented annually to undergraduate students who are first authors on an Experimental Biology (EB) abstract and presenting their research at the EB meeting. There are two types of Bruce Awards that students can apply for through a single application.

David S. Bruce Outstanding Undergraduate Abstract Awards

This award provides $100 and a 2-year complimentary membership with APS. The student must be enrolled as an undergraduate at the time of the abstract submission, be the first author on a submitted abstract for the EB meeting, and be working with an APS member. Selection of awardees is based on the abstract, letter of application, and letter of support from the research host. Receipt of the award is contingent on presenting the research at EB.

David S. Bruce Excellence in Undergraduate Research Awards

To be considered for this award, students must be a David S. Bruce Outstanding Undergraduate Abstract Awardee and must attend and present a poster at the EB meeting. The recipients receive $400 and a certificate. The highest ranked awardee receives another $250, thanks to the generous contribution of an APS member. Selection of awardees is based on the quality of the poster and oral presentation of the poster to the David Bruce Award Selection Committee.

Porter Physiology Development Fellowships

Application Deadline: January 15, 2016

the-aps.org/porter

The goal of the Porter Physiology Development Program is to encourage diversity among students pursuing full-time studies toward the PhD in the physiological sciences and to encourage their participation in the Society.

The Porter program provides a full-time graduate fellowship ($28,300 during the academic year) to students in programs leading to the PhD in the physiological sciences at U.S. institutions. The program is open to underrepresented racial and ethnic minority applicants who are citizens or permanent residents of the U.S. or its territories and student members of the Society.
Dale J. Benos Early Career Professional Service Award

Application Deadline: January 24, 2016

the-aps.org/benos

The Dale J. Benos Early Career Professional Service Award honors an early career stage (graduate student, postdoctoral fellow, Assistant Professor, or equivalent position) member of APS. The Award will honor someone who is judged to have made outstanding contributions to the physiology community and demonstrated dedication and commitment to furthering the broader goals of the physiology community. This can be by serving on professional committees, participating in K-12 education outreach, participating in scientific advocacy and outreach programs, or by otherwise strengthening and promoting the physiology community.

Undergraduate Summer Research Fellowships

Application Deadline: February 1, 2016

the-aps.org/summerresearch

APS is proud to offer four programs that allow undergraduate students to participate in research during the summer (IOSP, STRIDE, UGSF, UGREF). Recipients spend an average of 10 weeks in the laboratory of an established scientist and APS member. Each program recruits undergraduate students nationwide, two internationally. Some programs are open to students from disadvantaged backgrounds, from underrepresented racial and ethnic groups, and students with disabilities. Each Fellow receives a stipend plus additional funds for travel to present his or her research at a scientific meeting. Research hosts receive funds for student lab supplies.

APS/NIDDK STEP-UP Undergraduate Summer Research Fellowships

Application Deadline: February 15, 2016

the-aps.org/stepup

STEP-UP Fellows spend an average 8-12 weeks in the laboratory of an established scientist conducting research in the NIDDK mission areas. This program is open to students from disadvantaged backgrounds, from underrepresented racial and ethnic groups, and students with disabilities. Each Fellow receives a stipend plus additional funds for travel to present his or her research at the STEP-UP summer research symposium. Research hosts receive funds for student lab supplies.
In September, members of the APS Science Policy Committee (SPC) went to Capitol Hill to meet with their Senators and Representatives. Members of the Animal Care and Experimentation (ACE) held its Capitol Hill Day in October.

Participants in both Hill Day events used the Twitter hashtag #HillDayAPS to reinforce their messages.

SPC Capitol Hill Day: September 21, 2015

The SPC had 27 meetings with 14 Republican and 13 Democratic offices. The SPC highlighted the importance of raising overall budget caps to allow for increased funding for research at the National Institutes of Health (NIH) and the National Science Foundation (NSF). The SPC also discussed pending reauthorization bills for the NIH and NSF.

To learn how you can be an advocate for research, see the-aps.org/SciencePolicy.

Giovanna Collu, Katherine Wilkinson, and Amy Davidoff in the Hart Senate Office Building in front of “Mountains and Clouds” by Alexander Calder

Chris Westby, Kay Meier, and Allyson Hindle outside the Russell Senate Office Building

David Pollock, Jennifer Pollock, and John Chatham in front of the Longworth House Office Building

Alicia Schiller with Senator Deb Fischer (R-NE)

Alice Ra’an an, Amy Davidoff, and Giovanna Collu in the office of Congresswoman Chellie Pingree (D-ME 1)
ACE Committee Hill Day: October 21, 2015
The ACE committee participated in 16 meetings with 11 Republican and 5 Democratic offices. They discussed the importance of establishing regulations that ensure animal welfare and accountability for research funds, but prevent unnecessary administrative burden. The

ACE also discussed the need for safe and reliable air and ground transportation for research animals (see the APS position statement on research animal transportation to learn more about this issue: the-aps.org/AnimalTransport).
On October 14, 2015, the APS submitted comments providing the Food and Drug Administration (FDA) with information about the importance of ketamine in clinical and research settings. The FDA had requested input on how to represent U.S. concerns at the 36th meeting of the World Health Organization’s Expert Committee on Drug Dependence (ECDD), scheduled to take place November 16-20, 2015. WHO asked the ECDD to review a list of psychoactive substances deemed to have significant potential for dependence, abuse, or harm.

Ketamine is a Schedule III controlled substance in the U.S. but is not currently restricted under international treaties such as the Psychotropic Convention or the Single Convention on Narcotic Drugs. Ketamine abuse is a serious problem in China, where criminal gangs have acquired the expertise to synthesize it. The ECDD reviewed the status of ketamine at several recent meetings in response to requests from China to restrict its availability. This resulted in the formal request for comments from member states.

The APS comments focused on the importance of ketamine and included these points:

- Ketamine is currently classified in the U.S. as a Schedule III drug under the Controlled Substances Act. Consequently, it is strictly regulated, and safeguards are in place to prevent its illegal or unauthorized use. A change to this status would have deleterious impacts in clinical and research settings, where ketamine is approved as an anesthetic for both humans and animals.

- Ketamine is used for sedation and analgesia in clinical veterinary practice as well as in animal research. Because ketamine acts rapidly and its effects are short-lived, it is very useful for short surgical procedures in species ranging from rodents to non-human primates. Ketamine promotes animal welfare because the risk of overdose is low, so there are fewer complications.

- For these same reasons – quick onset of effect, rapid recovery, and low risk of complications – ketamine is also used in human surgeries for pediatric patients.

- In longer surgeries in human and animal patients, ketamine is used in combination with other drugs to produce stable anesthesia with fewer side effects.

- In research settings, ketamine is often the anesthetic of choice for short surgical procedures in rats and mice, such as to implant medical devices such as catheters, pressure transducers, and osmotic mini-pumps. These implants enable researchers to measure physiological processes with less handling of the animals. Since ketamine provides rapid recovery with a minimal risk of complications, it further promotes the animal welfare objectives of implants, namely to collect data with a minimal impact on the animals.

- Ketamine has attributes that are essential for certain kinds of research. It is preferable to other anesthetic agents when cortical neuron activity must be measured because it does not silence the spontaneous activity of those neurons. Without ketamine, it would be impossible to conduct many electrophysiological studies and optogenetic studies. Ketamine is also one of the few anesthetics that does not disturb glucose metabolism, making its use critical to studies of diabetes and glucose tolerance.

- Ketamine is incorporated into the research protocols for a large percentage of preclinical research studies. Changing the international regulation of ketamine would have a deleterious impact on this research by severely limiting access to an important anesthetic agent.

- We urge the FDA to safeguard the welfare of humans and animals by strongly opposing any changes to the international regulation of ketamine that would make this drug less accessible to physicians, veterinarians, and research scientists.

Despite China’s concerns about ketamine’s potential for abuse, it also has been noted that ketamine is widely used in the developing world, where it plays a crucial role by providing safe anesthesia at clinics in remote areas.
On October 13, 2015, NIH’s Office of Extramural Research issued new instructions for completing the Vertebrate Animal Section (VAS) of NIH grant applications, cooperative agreements, and contract proposals. The updates are intended to eliminate redundancy with oversight by the Institutional Animal Care and Use Committee (IACUC) while still meeting the requirements of the Public Health Service Policy on Humane Care and Use of Laboratory Animals.

These requirements apply to all NIH-funded work with live vertebrate animals, including those obtained or euthanized for tissue harvest or to generate custom antibodies. The requirements will go into effect for grant applications starting January 25, 2016. A checklist of items to include and an example of an acceptable VAS may be found at http://grants.nih.gov/grants/olaw/vertebrate_animal_section.htm.

Summary of Changes to VAS

According to NIH Notice NOT-OD-16-006, a description of veterinary care and justification for the number of animals used in a study are no longer required. The proposed euthanasia method need only be described if it is not consistent with the American Veterinary Medical Association (AVMA) guidelines.

Criteria for Applicants

All applicants must respond to the first three items. They must respond to the fourth item only if applicable (NIH website on VAS):

1) Describe the proposed use of animals for the study. Identify the species, strains, ages, sex, and total number of animals. If dogs and cats are involved, include their source.

2) Justify that the species is appropriate for the proposed research. Explain why research goals can’t be accomplished with an alternative model (e.g., computational, human, invertebrate, in vitro).

3) Describe procedures that will alleviate discomfort, stress, pain, and injury, such as the use of analgesia, anesthesia, sedation, palliative care, and humane end points. If tranquilizers, analgesics, and anesthetics are used, include the name and class of the drug.

4) Indicate whether the proposed method of euthanasia is consistent with the AVMA guidelines. If not, describe the method and provide a scientific justification.

Criteria for Reviewers

Reviewers must determine whether the use of vertebrate animals is appropriate for the proposed scientific work and whether the applicant has addressed all the required items of the Vertebrate Animal Section.

The 1887 Legacy Circle

What will your legacy be?
apsgiving.org
Current Calls for Papers

Physiological Genomics
- Gut Microbiota in Health and Disease
- Systems Biology and Polygenic Traits

Journal of Neurophysiology
- Auditory System Plasticity *(Submission deadline: July 1, 2016)*
- Comparative Approaches in Neurobiology *(Submission deadline: July 1, 2016)*
- Glial Cells and Neuronal Signaling *(Submission deadline: July 1, 2016)*

Advances in Physiology Education
- Pre-Professional Education in Transition
- Historical Perspectives and Living Histories

American Journal of Physiology – Heart and Circulatory Physiology
- Cardiovascular Mitochondria and Redox Control in Health and Disease *(NEW deadline: January 15, 2016)*
- Cardiovascular Epigenetics: Phenotypes and Mechanisms *(Submission deadline: January 31, 2016)*
- Quantitative Analyses of Coronary Vascular and Cardiac Mechanics in Health and Disease *(Submission deadline: January 31, 2016)*

American Journal of Physiology – Lung Cellular and Molecular Physiology
- Electronic Cigarettes: Not All Good News? *(Submission deadline: October 1, 2017)*
- Ion Channels and Transporters in Lung Function and Disease
- Age-Related Dysfunction in Lung Barrier Function in Health and Disease
- Real-Time Visualization of Lung Function: from Micro to Macro
- Bioengineering the Lung: Molecules, Materials, Matrix, Morphology, and Mechanics

American Journal of Physiology – Renal Physiology
- Endothelin in Renal Physiology and Disease *(Submission deadline: June 30, 2016)*
- Imaging Techniques in Renal (Patho)physiology Research *(Submission deadline: June 30, 2016)*
- Inflammation and Inflammatory Mediators in Kidney *(Submission deadline: June 30, 2016)*
- Purinergic Signaling Mechanisms in the Lower Urinary Tract *(Submission deadline: June 30, 2016)*
- Mechanism and Treatment of Renal Fibrosis and Treatment *(Submission deadline: June 30, 2016)*

American Journal of Physiology – Regulatory, Integrative and Comparative Physiology
- Sex and Gender Differences in Cardiovascular, Renal and Metabolic Diseases *(Submission deadline: June 30, 2016)*

For a complete list of current Calls for Papers, visit the APS website.
New Regular Members

transferred from student membership

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawana Adcock-Downey</td>
<td>UAH, Huntsville, AL</td>
</tr>
<tr>
<td>Njotu Agbor</td>
<td>Univ. of Iowa, Iowa City, IA</td>
</tr>
<tr>
<td>Hiroshi Ashikaga</td>
<td>Johns Hopkins Univ. Sch. of Med., Baltimore, MD</td>
</tr>
<tr>
<td>Yoram Baram</td>
<td>Technion, Haifa, Israel</td>
</tr>
<tr>
<td>Christine Beamish</td>
<td>Lawson Hlth. Res. Inst., London, ON, Canada</td>
</tr>
<tr>
<td>John Birmingham</td>
<td>Santa Clara Univ., Santa Clara, CA</td>
</tr>
<tr>
<td>Geoffrey M. Bove</td>
<td>Univ. of New England, Biddeford, ME</td>
</tr>
<tr>
<td>Jon Cafaro</td>
<td>Duke Univ., Durham, NC</td>
</tr>
<tr>
<td>Timothy Carroll</td>
<td>The Univ. of Queensland, Brisbane, Australia</td>
</tr>
<tr>
<td>Raymond J. Clark</td>
<td>MiraCosta College, San Marcos, CA</td>
</tr>
<tr>
<td>Zoe Cohen</td>
<td>Univ. of Arizona, Tucson, AZ</td>
</tr>
<tr>
<td>Frédéric Derbré</td>
<td>Univ. Rennes 2 - ENS Rennes, Bruz, France</td>
</tr>
<tr>
<td>Rosa Di Liddo</td>
<td>Univ. of Padova, Padova, Italy</td>
</tr>
<tr>
<td>David Joseph Durgan</td>
<td>Baylor College of Med., Houston, TX</td>
</tr>
<tr>
<td>Masumi Eto</td>
<td>Thomas Jefferson Univ., Philadelphia, PA</td>
</tr>
<tr>
<td>Sue Ford</td>
<td>St. John’s Univ., Jamaica, NY</td>
</tr>
<tr>
<td>Shanthi Ganesan</td>
<td>Iowa State Univ., Ames, IA</td>
</tr>
<tr>
<td>Anna Golubeva</td>
<td>Univ. College Cork, Cork, Ireland</td>
</tr>
<tr>
<td>Iris Isabelle</td>
<td>Anna Groen National Inst. of Mental Hlth., Bethesda, MD</td>
</tr>
<tr>
<td>Charles J. Heckman</td>
<td>Northwestern Univ. Med. Sch., Chicago, IL</td>
</tr>
<tr>
<td>Gay R. Holstein</td>
<td>Icahn Sch. of Med. at Mount Sinai, New York, NY</td>
</tr>
<tr>
<td>Thomas Hynd</td>
<td>James Madison Univ., Harrisonburg, VA</td>
</tr>
<tr>
<td>Susumu Hyodo</td>
<td>Atmosphere and Ocean Res. Inst., Univ. of Tokyo, Chiba, Japan</td>
</tr>
<tr>
<td>Fernando Raul Ibarra</td>
<td>Inst. De Investigaciones Med. A Lanari, Buenos Aires, Argentina</td>
</tr>
<tr>
<td>Hee-Seong Jang</td>
<td>Univ. of Nebraska Med. Ctr., Omaha, NE</td>
</tr>
<tr>
<td>Danielle Louise Kirkman</td>
<td>Univ. of Delaware, Newark, DE</td>
</tr>
<tr>
<td>Tomas Kulhanek</td>
<td>Charles Univ. in Prague, Praha 8, Czech Republic</td>
</tr>
<tr>
<td>Emily Lavoy</td>
<td>Univ. of Houston, Houston, TX</td>
</tr>
<tr>
<td>Xiang Li</td>
<td>College of Med. PSU, Hershey, PA</td>
</tr>
<tr>
<td>Rongrong Liu</td>
<td>Fourth Military Med. Univ., Xi’An, China</td>
</tr>
<tr>
<td>Yin Liu</td>
<td>Stanford Univ., Stanford, CA</td>
</tr>
<tr>
<td>Jeffrey H. Miner</td>
<td>Washington Univ. Sch. of Med., St. Louis, MO</td>
</tr>
<tr>
<td>Claire H. Mitchell</td>
<td>Univ. of Pennsylvania, Philadelphia, PA</td>
</tr>
<tr>
<td>Esteban Moya</td>
<td>Univ. of California-San Diego, La Jolla, CA</td>
</tr>
<tr>
<td>Shengyu Mu</td>
<td>Univ. of Arkansas for Med. Sci., Little Rock, AR</td>
</tr>
<tr>
<td>Fiona Murray</td>
<td>Univ. of Aberdeen, Aberdeen, United Kingdom</td>
</tr>
<tr>
<td>Klaus Olgaard</td>
<td>Rigshospitalet, Copenhagen, Denmark</td>
</tr>
<tr>
<td>Matthew Orange</td>
<td>Central Connecticut State Univ., New Britain, CT</td>
</tr>
<tr>
<td>Per Petersson</td>
<td>Lund Univ., Lund, Sweden</td>
</tr>
<tr>
<td>Paulo Wagner Pires</td>
<td>Univ. of Nevada Sch. of Med., Reno, NV</td>
</tr>
</tbody>
</table>
Khaled Qanud
New York Med. Coll., Valhalla, NY

Adam J. Sachs
The Univ. of Ottawa, Ottawa, ON, Canada

Luis Fernando Santana
Univ. of California-Davis, Davis, CA

Brad A. Seibel
Univ. of Rhode Island, Kingston, RI

Jai Shetake
Boston Scientific Neuromodulation, Santa Clarita, CA

Bruno Silva
Federal Univ. of Sao Paulo, Sao Paulo, Brazil

Komal Sodhi
Marshall Univ. Sch. of Med., Huntington, WV

Martin Szinte
Ludwig-Maximilians-Univ. München, Munich, Germany

Tom Taylor-Clark
Univ. of South Florida, Tampa, FL

Guillermo Vazquez
Univ. of Toledo Coll. of Med. and Life, Toledo, OH

Weihua Wang
Univ. of Arizona, Tucson, AZ

T. Cooper Woods
Tulane Univ., New Orleans, LA

Piet Albert Henri Wyffels
Ghent Univ. Hosp., Ghent, Belgium

Masaaki Yoshigi
Univ. of Utah, Salt Lake City, UT

Tianzheng Yu
Uniformed Services Univ., Bethesda, MD

Angelina Zanesco
UNESP, Rio Claro, Brazil

New Graduate Student Members

Balyssa Bell
Univ. of Iowa, Iowa City, IA

Cheavar Blair
Univ. of Kentucky, Lexington, KY

Alex Brownstein
Iowa State Univ., Ames, IA

Sierra Morgan Butcher
Tulane, New Orleans, LA

Songita Choudhury
Univ. of Nebraska Med. Ctr., Omaha, NE

Megan Michelle Clarke
Appalachian State Univ., Boone, NC

Matthew Davies
Univ. of Leeds, Leeds, United Kingdom

Lindsay Ellis
Univ. of British Columbia, Kelowna, BC, Canada

Zeinab Fazlali
Inst. for Res. in Fundamental Sciences (IPM), Tehran, Iran (Islamic Republic Of)

Joshua J. Foster
The Univ. of Chicago, Chicago, IL

Kibrom Gebremedhin
Michigan State Univ., East Lansing, MI

Dayton Joshua Goodell
Univ. of Colorado Anschutz Med. Campus, Denver, CO

Anne Hall
Baylor Coll. of Med., Houston, TX

Jamie Graham Hijmans
Univ. of Colorado Denver, Lakewood, CO

Said Ibeggazene
Univ. of Leeds, Leeds, United Kingdom

Ramakanth Reddy Kankanala
Med. Inst. of Med. Sci., Hyderabad, India

Deepesh Khanna
Texas A&M Univ., College Station, TX

Shawn Kuster
Univ. of Regina, Regina, SK, Canada

Jonathan Lambert
Temple Univ., Philadelphia, PA

Chang Woock Lee
Texas A&M Univ., College Station, TX

Alyssa Lombardi
Temple Univ. Sch. of Med., Philadelphia, PA

Jamie Meegan
Univ. of South Florida, Tampa, FL

Kathleen Byrne Miller
Univ. of Wisconsin-Madison, Madison, WI

Van Kim Ninh
LSUHSC-NO, Slidell, LA

Mark Pepin
Univ. of Alabama-Birmingham, Homewood, AL

Priya Prasai
Louisiana State Univ. Hlth. Sci. Ctr., Shreveport, LA

Teryn Roberts
Univ. of South Florida, Delafield, WI

Caroline Robertson
Charles Sturt Univ., Bathurst, Australia
Matthew Romero
Auburn Univ., Opelika, AL

Farzana Rouf
Oklahoma State Univ., Stillwater, OK

Frantz Sainvil
Univ. of Science, Arts and Technology, Davie, FL

Aarushi Sharma
Southern Illinois Univ., Springfield, IL

Hannah Spaulding
Iowa State Univ., Ames, IA

Adam Swiercz
The George Washington Univ., Northwest, DC

Laura Tetri
Univ. of Wisconsin-Madison, Madison, WI

Douglas Van Pelt
Univ. of Michigan, Ann Arbor, MI

Matthew Wallen
The Univ. of Queensland, Brisbane, Australia

Lei Wang
Univ. of Florida, Gainesville, FL

Lei Wang
Univ. of Minnesota, Saint Paul, MN

Ashley Ward
Univ. of Kansas Med. Ctr., Kansas City, MO

Alex Wiesman
Univ. of Nebraska Med. Ctr., Omaha, NE

Meng-Ying Wu
Graduate Inst. of Life Sci. New Taipei City, Taiwan, Taiwan

Christina Ju Lee
Univ. of Virginia, Charlottesville, VA

Affiliate Members

Andreas A. Giannopoulos
Brigham & Women’s Hosp., Boston, MA

Joyce Horton
Marian Univ., Indianapolis, IN

Deepak Kadiyala
Univ. of Maryland Med. Ctr., Baltimore, MD

Undergraduate Student Members

Katelynne Donnelly
Univ. of Wyoming, Laramie, WY

Christian Haase
Univ. Kailserslautern, Berlin, Germany

Trinity Kronk
Emory Univ., Sewickley, PA

DO YOU KNOW YOUR MEMBERSHIP CATEGORY & BENEFITS?

Learn about the variety of categories and their perks!

the-aps.org/categories
2015 APS/ET-14: International Conference on Endothelin: Physiology, Pathophysiology, and Therapeutics

Savannah, Georgia, September 2-5, 2015

The 2015 APS/ET-14: International Conference on Endothelin: Physiology, Pathophysiology and Therapeutics was held in the enchanting historic city of Savannah, Georgia. The conference took place over 4 days at the Hyatt Regency Savannah hotel, located just steps from the Savannah River waterfront, parks that boasted age-old gnarled oak trees that were dripping in Spanish moss, fairytale antebellum houses, and the charming historic district.

The Local Organizing Committee (LOC) was chaired by Adviye Ergul (Georgia Regents University), Anil Gulati (Midwestern University), and David Pollock (University of Alabama at Birmingham) (see Photo 1). The LOC organized a program that would include symposia, oral presentation opportunities for students and postdoctoral fellows, interactive poster sessions, and social networking opportunities to make this conference a valuable experience for those who attended. In addition to the LOC, the Scientific Advisory Committee and the International Advisory Committee assisted the organizers in reviewing and programming all of the abstracts that were submitted to the conference.

The conference was attended by 108 total registrants: 35 (33%) registrants were represented by invited chairs, speakers, and members of the organizing committees, 24 (22%) students, and 12 (11%) postdoctoral fellows. Moreover, 14 (13%) attendees identified themselves as APS members, and the remaining 23 (21%) registered as nonmembers (Photo 2). Table 1 (below) shows the breakdown of the different registration types. The ET-14 conference attracted 51 (47%) registrants from outside the U.S. The international attendees represented countries from Argentina, Austria, Brazil, Canada, Czech Republic, France, India, Italy, Japan, Nigeria, The Netherlands, Saudi Arabia, South Korea, Sweden, Switzerland, and the United Kingdom.

Table 1. Registration statistics

<table>
<thead>
<tr>
<th>Registration Type</th>
<th>Number of Attendees (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS member</td>
<td>14 (13%)</td>
</tr>
<tr>
<td>Nonmember</td>
<td>23 (21%)</td>
</tr>
<tr>
<td>Postdoctoral</td>
<td>12 (11%)</td>
</tr>
<tr>
<td>Student</td>
<td>24 (22%)</td>
</tr>
<tr>
<td>Invited Chairs/Speakers</td>
<td>35 (33%)</td>
</tr>
<tr>
<td>Total</td>
<td>108 (100%)</td>
</tr>
</tbody>
</table>

The conference organizers (left to right), David Pollock, Adviye Ergul, and Anil Gulati.

ET-14 attendees gather for the traditional ET group photograph in front of the Savannah River Queen boat.
The conference program consisted of 11 symposia on a wide variety of topics related to endothelin. The audience was encouraged to share their ideas and thoughts with the speakers at the end of their talks (Photos 3 and 4). Moreover, all of the symposia provided the opportunity for selected oral presentations from the volunteered abstracts that were submitted for the conference. In addition, there was a well attended Trainee Hot Topics Happy Hour session that gave students and postdoctoral fellows the opportunity to show one slide and have a 1-minute presentation (Photo 5). The conference also had several social activities including a Welcome and Opening Reception, which was designed to give attendees a chance to meet with long-time colleagues, create new friendships, and enjoy some hot and cold hors d’oeuvres and beverages while listening to live classical music by a local musician. There were also two afternoon poster sessions where scientists presented their work and discussed their findings with other attendees. On the last evening of the conference, a special ticketed event took place at the majestic antebellum Mansion on Forsyth Park. The attendees were treated to traditional Southern hospitality with a host of Southern appetizers, cocktails, and a three-course dinner, which included a Georgia peach dessert.

During the dinner event at the Mansion on Forsyth Park, Ergul, Gulati, and Pollock presented travel awards to 20 postdoctoral fellows and students who were recognized as the recipients of the APS Abstract Travel Award. The following individuals were presented with a certificate and cash prize: Diana Cardero (Florida International University), Louisiane Desbiens (University of Sherbrooke, Canada), Caitlin Dow (University of Colorado, Boulder), Yang Gao (University of Utah), Eman Gohar (University of Alabama at Birmingham), Trevor Hardigan (Georgia Regents University), Jermaine Johnston (University of Alabama at Birmingham), Malgorzata Kasztan (University of Alabama at Birmingham), Philip Kavlich (University of Colorado, Boulder), Alejandro Majali-Martinez (Medical University of Graz, Austria), Yujiro Matsuishi (University of Tsukuba, Japan), Kasi McPherson (University of Mississippi Medical Center), Rebecca Moorhouse (University of Edinburgh, UK), Hary Muliaawan (Kobe University Graduate School of Medicine, Japan), Ifeoma Okoli (Imo State University, Nigeria), Javier Pino (Florida International University), Kristen Solocinski (University of Florida, Gainesville), Yoko Suzuki (Kobe University Graduate School of Medicine, Japan), Rebecca Ward (Georgia Regents University), and Haiyan Xiao (Georgia Regents University) (Photo 6).

In addition, Carmen de Miguel and Jermaine Johnston (both from the University of Alabama at Birmingham), Javier Pino (Florida International University), and John Valenzuela (Georgia Regents University) were the recipients of the APS Minority Travel Fellow Travel Award, which is provided to encourage participation of underrepresented minority students in the physiological sciences. With generous support from the APS, the fellowship provides reimbursement of all expenses associated with travel and participation in the conference. The recipients of the award were matched with APS members: Robert Blank (Medical College of Wisconsin), Adviye Ergul (Georgia Regents University), Erika Boesen (University of Nebraska Medical Center), and Rita Tostes (University of São Paulo, Brazil), who
offered guidance and made introductions to the other scientists during the conference.

At the conclusion of the dinner, on behalf of the International Advisory Board on Endothelin, Pollock awarded the 2015 Tomoh Masaki Award to Martine Clozel (Actelion Pharmaceuticals, Switzerland) in recognition of excellence and achievement in the field of endothelin research (Photo 7).

A total of 102 abstracts were submitted for the conference. From the submitted abstracts, 88 were programmed as poster presentations. Out of the 88 poster presentations, 38 were also programmed as oral presentations, allowing for students and postdoctoral fellows to showcase their science. The remaining 14 abstracts were submitted by invited speakers. Of the abstracts submitted for the conference, 37 (36%) were submitted by a female first author; 50 (49%) were submitted from institutions outside of the U.S., including 16 from Japan, 19 from Europe, and 5 from Canada. The remaining abstracts came from Argentina, Brazil, India, Nigeria, and South Korea.

The American Physiological Society and the Organizing Committee gratefully acknowledge the financial support provided through generous educational grants from NIH, National Heart, Lung, and Blood Institute, Actelion Pharmaceuticals, Ltd., Gilead Sciences, Inc., Pharmazz, Elsevier/Life Sciences, Data Sciences International, Cell Signaling Technology, BioTek, Thermo Fisher Scientific, British Pharmacological Society, and Retrophin, Inc. •

Photo 5. One of the young investigators presenting during the Trainee Hot Topics Happy Hour session

Photo 6. Conference Organizers Pollock, Ergul, and Gulati congratulate the recipients of the APS Abstract Travel Award during the Award Ceremony

Photo 7. David Pollock congratulates Martine Clozel the 2015 Tomoh Masaki Award at the conference special event
Physiological Bioenergetics: From Bench to Bedside

Tampa, Florida, September 9-12, 2015

The 2015 APS Conference: Physiological Bioenergetics: From Bench to Bedside was held in Tampa, Florida over the course of three and a half days. The Organizing Committee included Chair Victor Darley-Usmar (University of Alabama at Birmingham), Co-Chair Sruti Shiva (University of Pittsburgh) (Photo 1), Shannon Bailey (University of Alabama at Birmingham), Andreas Beyer (Medical College of Wisconsin), Paul Brookes (University of Rochester), Janine Santos (NIH), Russell Swerdlow (University of Kansas), and Yisang Yoon (Georgia Regents University). The committee organized a program that included seven symposia, three plenary lectures, and two poster sessions. Moreover, the organizers provided 12 slots during the conference symposia for oral presentations that allowed students and postdoctoral fellows who had submitted abstracts to showcase their work. Finally, a career session was held during the conference that was designed to show attendees how they can move forward in the research field of bioenergetics, whether in the lab or within a company setting.

The conference was attended by 99 total registrants, of whom 35% were represented by young scientists, including 12 postdoctoral fellows and 23 students. Twenty-four (25%) attendees identified themselves as APS members, and 17 (17%) registered as nonmembers; invited chairs and speakers made up the remaining 23 (23%) attendees. Table 1 shows the breakdown of the different registration types. This conference mostly attracted registrants (79%) from inside the U.S. However, there was a small contingent of scientists (21%) who came to the conference from Canada, Columbia, Europe, Israel, Japan, and Nigeria.

Table 1. Registration Statistics

<table>
<thead>
<tr>
<th>Registration Type</th>
<th>Number of Attendees (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS member</td>
<td>24 (25%)</td>
</tr>
<tr>
<td>Nonmember</td>
<td>17 (17%)</td>
</tr>
<tr>
<td>Postdoctoral</td>
<td>12 (12%)</td>
</tr>
<tr>
<td>Student</td>
<td>23 (23%)</td>
</tr>
<tr>
<td>Invited Chairs/Speakers</td>
<td>23 (23%)</td>
</tr>
<tr>
<td>Total</td>
<td>99 (100%)</td>
</tr>
</tbody>
</table>

The conference program covered a host of research on bioenergetics and mitochondria. The audience was encouraged to share their ideas and thoughts with the speakers at the end of their talks. The conference also had several social activities, including a Welcome and Opening Reception, and two afternoon poster sessions where scientists presented their work and discussed their findings with other attendees (Photo 2).

A total of 73 abstracts were submitted for the conference. Fifty-one of these abstracts were programmed as poster presentations. The remaining 20 abstracts were submitted by invited speakers. Of the abstracts submitted for the conference, 24 (33%) were submitted by a female first author; a quarter of the submitted abstracts (25%) were submitted from institutions outside of the U.S., including 10 from Europe, 5 from Canada, 2 from Japan, and 1 from Nigeria.

On Friday evening, Darley-Usmar and Shiva hosted the Banquet and Awards Presentation Dinner. Attendees gathered in the hotel ballroom for dinner, wine, and conversation. During the event, 15 postdoctoral fellows and students were recognized as the recipients of the APS Abstract Travel Award. The following individuals
were presented with a certificate and cash prize: Karina Ait Aissa (Medical College of Wisconsin, Milwaukee), Saima Ajaz (King’s College London, UK), Christopher Akintayo (Afe Babaloo University, Nigeria), Pawel Albrycht (Warsaw University, Poland), Yang Chen (New Jersey Medical School/Rutgers University), Teague Cole University of Pittsburgh), Anna Czajka (King’s College London, UK), Jonathan Gumucio (University of Michigan), Lucas Maddalena (Brock University, Canada), Kiana Mahdaviani (Boston University School of Medicine), Kyle Trudeau (Boston University School of Medicine), Jennifer Valcin (University of Alabama at Birmingham), Yang Wang (Georgia Regents University), Heather Wilkins (University of Kansas Medical Center), and Jimmy Zhang (University of Rochester Medical Center) (Photo 3).

In addition, Karina Ait Aissa (Medical College of Wisconsin, Milwaukee), Kennedy Mdaki (Sanford Research), and Jennifer Valcin (University of Alabama at Birmingham), were the recipients of the APS Minority Travel Fellowship Award, which is provided to encourage participation of underrepresented minority students in the physiological sciences. With support from the Society, the fellowship provides reimbursement of all expenses associated with travel and participation in the conference. The recipients of the award were matched with three APS members: Paul Coen (Translational Research Institute/Florida Hospital), William Cade (Washington University in St. Louis), and Jaime Baum (University of Alabama at Birmingham), who attended the conference, offered guidance, and made introductions to other scientists.

The American Physiological Society and the Organizing Committee gratefully acknowledge the financial support provided through generous educational grants from the National Institute of General Medical Sciences, NIH, Seahorse Bioscience, and University of Pittsburgh Center for Metabolism and Mitochondrial Medicine. ●
Annapolis, Maryland, November 17-20, 2015

The fifth in a series of conferences related to physiology and gender entitled 2015 APS Conference: Cardiovascular, Renal and Metabolic Diseases-Physiology and Gender, kicked-off in the historic naval city of Annapolis, Maryland. The conference took place over 3 days at the Crowne Plaza Annapolis hotel, which was just a few minutes’ drive from the historic downtown area, which boasted the elegant and the oldest continuously used Maryland State House, the quaint harbor front, and the vast selection of some of the best seafood restaurants on the Eastern seaboard.

The Organizing Committee for the conference included Chairs Jane F. Reckelhoff (University of Mississippi Medical Center) and S. Ananth Karumanchi (Harvard University), as well as Hedwenn Brooks (University of Arizona, Tucson), Kate M. Denton (Monash University, Australia), Rolando J. Ramirez (University of Akron), Vera Regitz-Zagrosek (Charite University, Germany), Javier Salazar (University of Murcia, Spain), Willis K. Samson (St. Louis University School of Medicine), Kathryn Sandberg (Georgetown University, James R. Sowers (University of Missouri School of Medicine), Jennifer Sullivan (Georgia Regents University), You-Lin Tain (Chang Gung Memorial Hospital, Taiwan), and Rita Tostes (University of São Paulo, Brazil).

The conference was attended by 159 total registrants: 34 (21%) of registrants were represented by invited chairs, speakers, and members of the organizing committees, 41 (26%) were students, and 21 (13%) were postdoctoral fellows. Moreover, 46 (29%) of attendees identified themselves as APS members, and the remaining 17 (11%) registered as nonmembers. Table 1 (below) shows the breakdown of the different registration types. The conference attracted 29 (18%) registrants from outside the U.S. The international attendees represented countries from Argentina, Australia, Brazil, Canada, Czech Republic, Germany, Israel, Japan, The Netherlands, Saudi Arabia, South Africa, and Spain.

The conference program consisted of eight symposia on a wide variety of topics related to physiology and gender. The audience was encouraged to share their ideas and thoughts with the speakers at the end of their talks. Moreover, all of the symposia provided the opportunity for young investigators to present their work in a short oral presentation from abstracts that they submitted to the conference. Moreover, the conference had a plenary session presented by Janine Clayton (NIH, Office of Research in Women’s Health), as well as the Distinguished Investigator Award Lecture, presented...
by Chris Baylis (University of Florida, Gainesville). After the lecture, Jennifer Sullivan and Jane Reckelhoff presented Baylis with an award in appreciation of her work in the gender field (Photo 1). The conference also had several social activities including a Welcome and Opening Reception, which was designed to give attendees a chance to meet with long-time colleagues, create new friendships, and enjoy some hot and cold hors d’oeuvres and beverages (Photos 2-3). There were also two afternoon poster sessions where scientists presented their work and discussed their findings with other attendees. On the last evening of the conference, a special banquet and award ceremony was held.

While attendees feasted on traditional Maryland Crab Cakes, organizers Reckelhoff and Karumanchi presented travel awards to 38 postdoctoral fellows and students who were recognized as the recipients of the APS Abstract Travel Award (Photos 4-5). The following individuals were presented with a certificate and cash prize: Brittany Balser (University of Akron), John Bowman (Washington and Lee University), Gene Crislip (Georgia Regents University), John Dasinger (University of Mississippi Medical Center), Kristine DeLeon-Pennell (University of Mississippi Medical Center), Jessica Faulkner (University of Mississippi Medical Center), Michelle Farve (Rutgers University), Ellen Gillis (University of Mississippi Medical Center), Eman Gohar (University of Alabama at Birmingham), Guiomar Gomes (University of São Paulo, Brazil), Rayna Gonzales (University of Arizona, Phoenix), Taben Hale (University of Arizona, Phoenix), Victoria Halperin-Kuhns (Johns Hopkins University School of Medicine), Ronee Harvey (Mayo Clinic), Jaime Hijmans (University of Colorado, Boulder), Edith Hochhauser (Rabin Medical Center, Israel), Shaletha Holmes (Univ. of North Texas Health Science Center), Aline Jarre (Campinas State University, Brazil), Sofien Laouafa (University of Laval, Canada), Jacqueline Limberg (Mayo Clinic), Rheure Lopes (University of São Paulo, Brazil), Margaret Murphy (University of Kentucky), Jane Novais (São Paulo State University, Brazil), Ajeeth Pingili (University of Tennessee Health Science Center), Dennis Pollow, Jr. (University of Arizona, Tucson), Jonathan Respress (Baylor College of Medicine), Carla B. Rosales (Tulane University), Ibolya Rutkai (Tulane University), Corinna Serviente (University of Massachusetts,
Amherst), Sonali Shaligram (University of the Pacific), Kanakadurga Singer (University of Michigan), Lauren Stein (St. Louis University), Jared Tur (University of South Florida), Luciana Veiras (University of Southern California), Martin Vizek (Charles University, Czech Republic), Tracey Weissgerber (Mayo Clinic), Baojian Xue (University of Iowa), and Margaret Zimmerman (Tulane University).

The APS Minority Travel Fellow Award, which is provided to encourage participation of underrepresented minority students in the physiological sciences, was awarded to the following recipients: Mark Cunningham (University of Mississippi Medical Center), Kristine DeLeon-Pennell (University of Mississippi Medical Center), Katiria Flores (University of Connecticut), Bernard Ogola (Texas Technology University Health Science Center), Ana Palei (University of Mississippi Medical Center), Maria Torres (East Carolina University), Laura Villasana (Oregon Health and Science University), and Junie Warrington (University of Mississippi Medical Center). With generous support from the APS, the fellowship provides reimbursement of all expenses associated with travel and participation in the conference.

Finally, a surprise award was announced to the attendees at the dinner. Courtesy of the American Journal of Physiology–Regulatory, Integrative, and Comparative Physiology and Editor-in-Chief Willis K. Samson, an additional eight individuals were announced for providing an outstanding poster presentation at the conference. The recipients of the award were Suzan Al-Gburi (Technical University of Dresden, Germany), Jacqueline Limberg (Mayo Clinic), Colette Miller (Environmental Protection Agency), Dennis Pollow, Jr. (University of Arizona, Tucson), Jessica Santollo (University of Buffalo), Corinna Serviente (University of Massachusetts, Amherst), Lauren Stein (St. Louis University), and Maria Torres (East Carolina University) (Photo 6).

A total of 123 abstracts were submitted for the conference. From the submitted abstracts, 99 were programmed as poster presentations. Out of the 99 poster presentations, 25 were also programmed as
oral presentations, allowing for students and postdoctoral fellows to showcase their science. The remaining 24 abstracts were submitted by invited speakers. Of 123 abstracts submitted for the conference, over half were submitted by a female first author. Seventy-one women were depicted as the first author on the abstracts submitted (58%) compared with 52 (42%) male first author of abstracts submitted.

The American Physiological Society and the Organizing Committee gratefully acknowledge the financial support provided through generous educational grants from American Heart Association Council, Council on Hypertension, and the University of Mississippi Medical Center, Women’s Health Research Center.
People and Places

Kibble Presented with Robert J. Glaser Distinguished Teacher Award

Alpha Omega Alpha Robert J. Glaser Distinguished Teacher Award has been presented to APS Member Jonathan Kibble, Assistant Dean for Undergraduate Medical Education and Professor of Physiology and Medical Education at the University of Central Florida College of Medicine. Kibble is a medical educator who inspires students to learn and whom teachers aspire to emulate in equal measure.

Chien Recognized as Franklin Institute Award Laureate

Shu Chien, APS Past-President and APS Fellow, was recognized as one of the 2016 Franklin Institute Awards Laureates. Chien received the Benjamin Franklin Medal in Mechanical Engineering for contributions to the understanding of the physics of blood flow and for applying this knowledge to better diagnose cardiovascular disease. The Franklin Institute Awards Program dates back to 1824, when the Institute was founded by a group of leading Philadelphians to train artisans and mechanics in the fundamentals of science. Through its awards program, The Franklin Institute seeks to provide public recognition and encouragement of excellence in science and technology, preserving Benjamin Franklin’s legacy.

Tang Prize Lecture to be Presented at Experimental Biology 2016

Established in 2012, the Tang Prize in Biopharmaceutical Science awards ~$1.3 million in recognition of “original biopharmaceutical or biomedical research that has led to significant advances toward preventing, diagnosing, and/or treating major human diseases to improve human health.”

Colin Caro writes: “I must thank you for your recent, unexpected, but most welcome letter, received as I approach nonagenarian status.

“What am I doing now? In many ways, I have been highly fortunate in being able to continue my work, albeit now as Emeritus Professor and Senior Research Investigator in the Department of Bioengineering at Imperial College London.

“I was born in South Africa and read physiology and medicine at the University of the Witwatersrand. Looking back over the years, I have had a continuing interest in mechanics and things mechanical in physiology. In the 1950s, I was a Fellow and later Research Associate in the Department of Physiology and Pharmacology, Graduate School of Medicine of the University of Pennsylvania, first under Julius Comroe and later under Bob Forster and Arthur DuBois. Indeed, I have memories of giving one of my first communications, in the field of respiration mechanics, at the 1958 Fall Meeting of the APS at the University of Western Ontario. I also became a member of the APS at about that time.

“On returning to the UK in 1959, my interest became directed toward circulation mechanics where, following a wish which remains, I could try to link even more closely physiology and physical science. I worked first with Donald McDonald on wave propagation in the pulmonary circulation. I was then able, with the support of the renowned mathematician James (later Sir James) Lighthill to set up at Imperial College the Physiological Flow Studies Unit (PFSU).

“The PFSU, then almost unique in the field, was comprised of engineers, mathematicians, medics, and physiologists coming from many parts of the world. It served as a focus for research and teaching, and many of its members and academic visitors went on to distinguished careers and to form similar structures.

“I would like to mention some of the early members of the PFSU. They include: Bob Schroter, Tony Seed, Mike Sudlow, Tim Pedley, Kim Parker, Jim FitzGerald, John Lever, Bob Nerem, Shelly Weinbaum, Takami Yamaguchi, and John Tarbell. There were also visits from, among others, Mort Friedman, Lars Walloe, Sy Glagov, Don Giddens, Dick Skalak, Bert Fung, Moto Sugawara, and Alex Silberberg. It may be claimed that the PFSU contributed to the later formation of the Department of Bioengineering at Imperial and that many of the PFSU’s members and visitors became lifelong friends.

“In 1969, based on the PFSU’s multidisciplinarity, a slender knowledge of fluid mechanics, and pathological observations, I proposed, to account for the patchy distribution of atherosclerosis in arteries, that the process develops preferentially at locations where wall shear is low. It would seem there is still wide acceptance of that proposal, or elaborations of it, and still extensive related fundamental work.

“Skipping a few decades of research, I recognized that the curvature and branching of normal arteries is commonly nonplanar or helical, rather than planar (two-dimensional), and suggested that this observation could have implications for arterial physiology and pathology.

“Work is still needed to discover the significance of the observation. However, one outcome has been the development of a novel stent for the management of arteries obstructed by atherosclerosis. The novel stent, which I devised, has a helical-centerline, in recognition of the helical geometry of arteries, and is produced by a spin-out company (Veryan Medical Limited), of which I was a key founder. Conventional, straight-centerline stents will tend to reduce the physiological curvature of arteries. In contrast, the helical-centerline stent deforms arteries helically, causing swirling and cross-mixing of the flow. In consequence, there is among other changes reduction of extremes of wall shear and hence elevation of wall shear where wall shear is low.

“Pre-clinical porcine studies have demonstrated significantly less intimal hyperplasia in helical-centerline stented than straight-centerline stented arteries; intimal
hyperplasia is the leading cause of stent failure. Recently, a randomized, controlled clinical trial has been undertaken of the helical-centerline stent (BioMimics 3D Nitinol self-expanding stent) in patients undergoing intervention for atherosclerosis affecting the superficial femoral and popliteal arteries. This revealed, among other favorable findings, that the bare-metal helical-centerline stent provided significant improvement in respect of long-term patency, compared with bare-metal straight-centerline control stents. It should be added that, by permitting a stented segment to shorten under compression, the helical-centerline stent reduces the risk of stent fracture.

"It is my hope that I may be able to continue to work with colleagues a little longer, to more fully understand these phenomena, which appear to play roles in the pathogenesis of atherosclerosis and intimal hyperplasia.

"I am asked to provide some ‘words of wisdom’ for younger colleagues. A primary wish is that, for those so inclined, they should foster the interaction of physiology and physical science.”

Letter to Lois Heller

Don Frazier writes: “Thank you so much for my birthday card and kind words therein. With respect to my current activities since retirement in 2000, I currently enjoy a post-retirement appointment in the University of Kentucky College of Medicine as an Emeritus Professor in the Department of Physiology. This appointment allows me to continue as the Founder and Director of the UK Outreach Center for Science, which is still going strong. Since its inception in 1992, we have had the opportunity to interact with over 125,000 Kentucky students at all levels, with the primary focus always on the appreciation of the wonderful biological system they possess and the awesome responsibility they have to nurture it. This of course allows us the opportunity to encourage them to acquire the necessary tools of chemistry, math, science, and communication skills. We have slowed down a little but still run about 4,000 students per academic year. I might add, the feedback from the students and teachers brightens my day and helps me maintain my resolve to continue until the time they start to fall asleep during an interactive presentation or, worse, start throwing tomatoes at me. The Center also continues with many summer programs that bring students to our campus for summer science camps and individually funded programs. Although not deserved, as our wonderful staff and volunteers make the difference, I am being honored on September 25, 2015 as the Center is being named after me.

“Other activities include our long-standing NIH-NIGMS-funded grant-writing program. In the mid-90s NIGMS issued a FOA that focused on helping minority faculty or faculty at institutions that served a high percent of minority students get funded. The guidelines stipulated the development of a Web-based internet grant-writing course, which is still up and running. In addition to the course, we continue offering (to eligible faculty) grant-writing workshops on our campus (two per year) and as many as three offsite throughout the country. Our involvement with the participants continues as we provide mentoring and/or proposal reviews for as long as required. We are happy to report that we just received funding for our competing renewal. I still teach one graduate level course per fall semester.

"Marty will be happy to know that I continue to play tennis regularly with wonderful friends at noon rather than eat. It is well known by everyone that our group can make a can of tennis balls last a year, and we never break a string. I continue to be President of the UK Men’s and Women’s Tennis Programs booster club. In fact, just this year, I was inducted into the Kentucky Tennis Hall of Fame – not for my talent on the court but as a fan and supporter, although I wish they had included skill.

"My passing thought is continue those things that keep you motivated each day and, if at all possible, share your talents, whatever they are, with others.”
Positions Available

Assistant Professor: The Department of Physiology at Michigan State University (MSU) seeks an engaging teacher with a strong interest in undergraduate education to serve as the course coordinator and instructor of a new upper division laboratory course in physiology. The course is intended to teach a broad range of physiological principles to a diverse group of pre-health and life science majors. Duties will include developing laboratory exercises, teaching multiple sections of the laboratory course throughout the academic year, overseeing course organization and logistics, training and supervising teaching assistants, evaluating student performance, and reporting grades. Additional duties may be assigned as required. This is a fixed-term (non-tenured) faculty appointment, renewable subject to annual review. Qualifications for this position include a PhD or an equivalent advanced degree in a basic biomedical science field that includes formal training in physiology. Prior experience and a strong interest in teaching, familiarity with the logistical demands of an undergraduate teaching laboratory, experience with learning management systems and other contemporary instructional technologies, excellent communication skills, and an ability to work effectively with large numbers of students from diverse educational backgrounds are preferred. The successful candidate is expected to collaborate with current faculty to advance MSU’s strong commitment to undergraduate STEM education and to play an active role in the broader mission of excellence in undergraduate education at MSU. **Desired qualifications:** The ideal candidate would have experience developing and teaching student lab experiences at the undergraduate level, working with students as human subjects, using animals or animal tissues to illustrate fundamental principles in physiology, and familiarity with instrumentation and protocols related to digital acquisition of physiological data. Please apply to www.jobs.msu.edu; posting no. 2290. Candidates should supply the following: a CV; cover letter; teaching philosophy uploaded as the required document labeled “Learning Philosophy.” Review of applications will begin on November 12, 2015 and continue until the position is filled. Thank you for your interest in this position. The screening and selection process is currently underway and will continue until a successful candidate is chosen. Should review of your qualifications result in a decision to pursue your candidacy, you will be contacted.

Assistant Professor: Florida Southern College invites applications for a full-time, tenure-track Assistant Professor of Biology position to begin in August 2016. The successful candidate will be expected to teach undergraduate courses in human anatomy, physiology, developmental biology, histology, and other courses that support students in biology and nursing majors. The position will also require extensive advising for students aspiring to careers in the health professions. Review of applications will begin immediately and continue until the position is filled, but only applications received by November 30, 2015, can be assured full consideration. The position starting date is fall 2016. A complete application consists of a cover letter, curriculum vitae, teaching philosophy (up to 500 words), research statement involving undergraduate students (up to 500 words), contact information for three recommendations, and graduate transcripts. Qualified candidates will have completed a PhD degree in biology, anatomy, physiology, or related fields and have strong credentials teaching undergraduate students. Knowledge of gross human anatomy and organ system physiology is a plus. The successful candidate will demonstrate a commitment to excellence and innovation in undergraduate teaching and be skilled in methods of engaged learning, the use of instructional technology, and directing undergraduate research. In addition, FSC faculty members participate effectively in advising, committee work, and other activities supporting FSC’s teaching and learning community. **Application information:** contact Human Resources, Florida Southern College; online app. form: https://www.flsouthern.edu/human-resources.aspx#hr-working.

Assistant Professor: EMU’s Departments of Biology and Chemistry seek a physiology professor with a terminal degree in biology. Other potential areas of expertise will be considered such as kinesiology or developmental biology. Responsibilities include teaching courses in human physiology and developmental biology, with the potential to teach courses in research methods, ethics, or biomechanics. Course audience can be solely undergraduate or graduate as well as dual-enrollment; thus the successful applicant will demonstrate effective teaching at both introductory and advanced levels. The biology department at EMU emphasizes open-ended, question-driven laboratory experiments, discussion of ethical and religious implications of biomedicine, and research. The biology and chemistry departments
have an excellent record of success for alumni achieving admission to health sciences graduate and professional studies. The ability to work collegially as part of an integrated graduate and undergraduate program and compatibility with the department’s mission is essential. Research in a biomedical area that incorporates both undergraduate and graduate students as well as advising both undergraduate and graduate students in the health sciences will be required. Qualifications: doctorate in biology (ABD acceptable). Experience teaching is desirable. Compensation: Nine-month contract. Salary determined by education and experience. Eastern Mennonite University uses a tenure-with-review contract system. Appointment date: Position begins mid-August 2016. Review of applications will begin on November 13, 2015. EMU reserves the right to fill the position at any time or keep the position open. Inquiries: Application review begins immediately. Applicants will be asked to respond to questions specific to EMU’s mission after the initial inquiry. Send letter of application, curriculum vitae, transcripts (unofficial acceptable), and three letters of reference to Dr. Deirdre Smeltzer, Vice President and Undergraduate Academic Dean, Eastern Mennonite University, 1200 Park Road, Harrisonburg, VA 22802; e-mail, ugdean@emu.edu; phone, (540) 432-4141; website, http://www.emu.edu. Eastern Mennonite University is an equal-opportunity employer, committed to enhancing diversity across the institution. Eastern Mennonite University does not discriminate on the basis of race, color, national or ethnic origin, sex, disability, age, sexual orientation, or gender identity. EMU conducts criminal background investigations as part of the hiring process. EMU seeks faculty who have demonstrated or show promise of teaching excellence in a Christian liberal arts environment, a commitment to ongoing scholarship, and familiarity with and support for Anabaptist/Mennonite Christian faith practices.

Assistant/Associate Professor: The Department of Kinesiology in the Curry School of Education at the University of Virginia (UVA) seeks applicants for a tenure-track assistant or a tenured associate professor in the area of nutrition/physical activity and health and well-being. Responsibilities include teaching, student advisement, and leadership and service to the program, department, school, university, and profession. The department and UVA offer a highly collaborative, interdisciplinary environment, where the incumbent has the opportunity to design and implement novel nutrition/exercise interventions to control obesity and obesity-related diseases, and to improve health and well-being across the lifespan. Candidates who exhibit a commitment to diversity and equity through their teaching, scholarship, and service are encouraged to apply. A doctoral degree in nutritional science, exercise science, or a related field is required by the start date of the position. Postdoctoral research experience and at least one semester of experience teaching at the university level, as well as prior experience with mentoring students are preferred. A registered dietician nutritionist is preferred. Research expertise in nutritional sciences related to physical activity/exercise and health and well-being is required. Knowledge of culturally responsive pedagogy and the ability to implement a variety of pedagogical techniques appropriate for academically diverse learners is required. Respect for diversity and richness in human difference and the ability to form productive collaborations with faculty across grounds are essential. Finally, a track record of scholarship related to the role of nutrition and physical activity/exercise on health and well-being outcomes related to children and adolescents is required, as is a strong potential for developing an externally funded research program. An extramurally funded research program is required for consideration as an Associate Professor. The University of Virginia is located in beautiful Charlottesville, Virginia, 100 miles south of Washington, DC along the foothills of the Blue Ridge Mountains. The area is widely known for its scenic beauty and historical significance, and is ranked among the most exciting, healthiest, and favorite places to live. The Department of Kinesiology, among the top programs in the U.S., offers a bachelor’s degree in kinesiology, and masters and doctoral degrees in kinesiology, with specializations in exercise physiology, athletic training/sports medicine, adapted physical education, and pedagogy. To apply, visit http://jobs.virginia.edu and search on Posting Number 0617279. Complete a Candidate Profile online, attach a cover letter, curriculum vitae, statement of teaching philosophy, and contact information for three references. Applicant screening begins October 19, 2015, and the position will remain open to applicants until filled. For questions about the position, please contact Joe Hart, Associate Professor, at joehart@virginia.edu. For questions about the application process, please contact Ellen Missana, Curry Director of Human Resources, at ejm6n@virginia.edu. The Curry School of Education and the University of Virginia are Equal Opportunity/Affirmative Action employers.
We seek to build a culturally diverse intellectual environment and welcome applications from women, minorities, veterans, and persons with disabilities.

Assistant/Associate Professor: Discover the vision and excitement at Baylor as we seek applications and nominations for the following tenure-track faculty position in the Department of Health, Human Performance and Recreation (HHPR) within the College of Health and Human Sciences. **Position:** Tenure-Track Assistant/Associate Professor of Health, Human Performance and Recreation with a specialization in Exercise Physiology. **Date of appointment:** August 2016. **Background:** Baylor University is a private Christian university and a nationally ranked research institution, consistently listed with highest honors among The Chronicle of Higher Education’s “Great Colleges to Work For.” Chartered in 1845 by the Republic of Texas through the efforts of Baptist pioneers, Baylor is the oldest continuously operating university in Texas. The university provides a vibrant campus community for over 15,000 students from all 50 states and more than 80 countries by blending interdisciplinary research with an international reputation for educational excellence and a faculty commitment to teaching and scholarship. Baylor is actively recruiting new faculty with a strong commitment to the classroom and an equally strong commitment to discovering new knowledge as we pursue our bold vision, Pro Futuris (www.baylor.edu/profuturis/). **Qualifications:** Outstanding scientists are invited to apply for a tenure-track faculty position in the Department of Health, Human Performance and Recreation. We are seeking individuals who have research interests addressing genomics and/or epigenomics in skeletal muscle physiology, muscle and strength changes in aging, immunology, and inflammation, and/or complement existing areas of excellence in genomics, proteomics/metabolomics, and cardiovascular, metabolic, and muscle physiology. To be considered for a tenure-track position at the Assistant/Associate Professor level, applicants must hold a PhD or equivalent degree. Appropriate relevant postdoctoral research experience is preferred. **Responsibilities:** Successful candidates must either currently have or demonstrate potential to obtain significant extramural research funding. Previous university-level teaching experience is highly desirable. Special consideration will be given to candidates who are broadly trained and demonstrate strong backgrounds in one or more of the following areas: 1) skeletal muscle genomics and/or epigenomics; 2) skeletal muscle physiology; 3) influences of aging on skeletal muscle physiology and function; 4) immunology and/or inflammation as they relate to skeletal muscle, cardiovascular, and metabolic physiology; 5) transient responses and chronic adaptation to exercise and/or environmental stressors. Research that is conducted largely or partly in human subjects is highly desirable. The successful candidate is expected to establish a vigorous research program supported by extramural funding, engage in collaborative research endeavors with existing faculty members, contribute to the mission of the department in undergraduate and graduate education, teach courses in exercise physiology and/or related areas, and engage in departmental and university service. The successful candidate will also have the ability to work effectively with faculty, staff, and students with diverse backgrounds. **Salary & review date:** Competitive salary support and start-up funds will be provided. Preference will be given to applicants whose philosophy is compatible with the stated mission of the University to be a world-class institution dedicated to Christian principles and ideals. Applications must be complete by October 30, 2015 to guarantee consideration. The review of completed applications will continue until the position is filled. **Application:** The application package must include a formal letter of application (specifically address how you, the applicant, meet qualifications and can fulfill responsibilities described in this position announcement), a list of names and contact information of three references who may be contacted for a letter of recommendation, your full curriculum vitae, copies of degree transcripts, and samples of research publications. Electronic (PDF) copies of all application materials are preferred. Send to Dr. Peter Grandjean, Search Committee Chair, at Peter_Grandjean@baylor.edu. Mailing address: One Bear Place # 97313, Waco, TX 76798-7313; phone: 254/7103909; fax: 254/710-3527. To learn more about the above position, visit www.baylor.edu/hr/facultypositions; the Robbins College of Health & Human Sciences, http://www.baylor.edu/chhs/; the Department of Health, Human Performance and Recreation, http://www.baylor.edu/hhpr/. Baylor University is a private not-for-profit university affiliated with the Baptist General Convention of Texas. As an Affirmative Action/Equal Opportunity employer, Baylor is committed to compliance with all applicable antidiscrimination laws, including those regarding age, race, color, sex, national origin, marital status,
pregnancy status, military service, genetic information, and disability. As a religious educational institution, Baylor is lawfully permitted to consider an applicant’s religion as a selection criterion. Baylor encourages women, minorities, veterans, and individuals with disabilities to apply.

Assistant/Associate Professor: Founded in 1856, University of Maryland, College Park is the flagship institution in the University System of Maryland. Our 1,250-acre College Park campus is just minutes away from Washington, DC, and the nexus of the nation’s legislative, executive, and judicial centers of power. This unique proximity to business and technology leaders, federal departments and agencies, and a myriad of research entities, embassies, think tanks, cultural centers, and non-profit organizations is simply unparalleled. Synergistic opportunities for our faculty and students abound and are virtually limitless in the nation’s capital and surrounding areas. The University is committed to attracting and retaining outstanding and diverse faculty and staff who will enhance our stature of preeminence in our three missions of teaching, scholarship, and full engagement in our community, the state of Maryland, and the world. **Position summary:** The Department of Kinesiology, School of Public Health, University of Maryland College Park (www.sph.umd.edu/KNES/) invites applications for a 9-month tenure-track position in cardiovascular and/or skeletal muscle exercise physiology. The position can be filled at the Assistant or Associate Professor rank. The successful candidate is expected to conduct research within the broad field of exercise physiology and physical activity and, preferably, to collaborate with ongoing research in the Department, including: paracrine signaling of circulating angiogenic stem cells; calcium signaling in skeletal muscle; effects of exercise on memory, executive function, and overall brain function; mechanical loading and musculoskeletal health; mechanics, energetics, and control of the extremities (hand, arm, lower limb); non-invasive brain biomarkers for cognitive-motor performance and learning; physical activity participation, built environment, and public health. The successful candidate will be expected to develop and maintain a nationally recognized and externally funded program of original research; advise, direct, and teach graduate students; and teach appropriate undergraduate courses. **Minimum qualifications:** Candidates should possess a doctoral degree in kinesiology or a related field. **Preferences:** Postdoctoral research experience is strongly preferred, and a history of extramural funding is desirable. The applicant must demonstrate evidence of a sustainable and focused research program and a strong publication record. Evidence of teaching experience and graduate student mentorship and advising is desirable. The School and University offer opportunities for collaboration across a multidisciplinary faculty. Additional research opportunities are possible with the University of Maryland Baltimore School of Medicine, Johns Hopkins University, NIH, Walter Reed National Military Medical Center, and other universities and organizations in the Baltimore-Washington region. **Application:** Applicants must apply electronically to position no. 106005 listed under faculty positions at [https://ejobs.umd.edu.](https://ejobs.umd.edu) Review of applications will begin immediately, and applications will be accepted until the positions are filled. For best consideration, candidates are expected to submit materials by December 1, 2015. Applications should include the following: 1) cover letter describing qualifications and experience in cardiovascular and/or skeletal muscle exercise physiology, 2) a curriculum vitae, 3) a statement of research focus including current and planned research, 4) a statement of teaching experience and interest, 5) names of three individuals and contact information who can provide references (to be contacted only with candidate’s approval), and 6) copies of the three most significant publications. Inquiries about the position should be directed to Dr. James Hagberg, Search Committee Chair (hagberg@umd.edu). **Salary:** Negotiable, depending on experience; startup funds competitive. The University of Maryland, College Park, an equal opportunity/affirmative action employer, complies with all applicable federal and state laws and regulations regarding nondiscrimination and affirmative action; all qualified applicants will receive consideration for employment. The University is committed to a policy of equal opportunity for all persons and does not discriminate on the basis of race, color, religion, sex, national origin, physical or mental disability, protected veteran status, age, gender identity or expression, sexual orientation, creed, marital status, political affiliation, personal appearance, or on the basis of rights secured by the First Amendment, in all aspects of employment, educational programs and activities, and admissions.

Assistant/Associate Professor: The Department of Biochemistry and Microbiology in the Joan C.
Edwards School of Medicine and the Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University are seeking applicants for a tenure-track joint appointment at the Assistant or Associate Professor level. Applicants must have a PhD, MD, or equivalent degree and at least 2 years of postdoctoral experience. The successful candidate will establish a competitive, externally funded research program, participate in team teaching to medical and graduate students as assigned by the department chair, and provide service within the Department, Medical School, and University. Preference will be given to individuals with research interests and experience in the causes and treatment of chronic human diseases. A competitive, state-funded salary and start-up package commensurate with experience will be provided. Additional information about the Department and the MIIR can be found at their websites (jcesom.marshall.edu/departments/biochemistrymicrobiology; www.marshall.edu/miir). Interested candidates should send a curriculum vitae, representative reprints, summary of past experience, statement of teaching philosophy, statement of research interests and future plans, contact information, and a list of three references. All materials should be submitted online to the Marshall University Human Resources website https://marshall.peopleadmin.com/postings/4913. Applications will be considered on a rolling basis until the position is filled. Marshall University is an equal opportunity/affirmative action employer and strongly encourages applications from women and minority candidates.

Assistant/Associate/Full Professor: The Oklahoma Medical Research Foundation (OMRF, www.omrf.org) is seeking established investigators with expertise in aging skeletal muscle physiology or neurobiology of aging to join the Aging and Metabolism Research Program. Successful candidates will be expected to maintain a vigorous independent research program that addresses issues relevant to mechanisms of sarcopenia and frailty, neuromuscular junction maintenance, aspects of age-related changes in muscle physiology, or mechanisms of age-related neurodegeneration. Candidates with significant knowledge of peripheral motoneuron biology and diseases of neuromuscular degeneration, such Amyotrophic Lateral Sclerosis (ALS) or age-related neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), are of special interest. Successful candidates will receive an appointment at the Associate or Full Member level (Associate and Full Professor equivalents) in the Program as well as a generous, multi-year start-up package with significant sustained salary and research support. The Aging and Metabolism Research program is comprised of seven faculty members studying a variety of disease-related areas of investigation associated with the aging process, including musculoskeletal, neurological, metabolic, and cardiovascular disorders. The program is supported by significant equipment resources including two LC-tandem mass spectrometry systems, equipment for metabolite analysis, an electron spin resonance instrument, and a small animal metabolic screening system. OMRF also supports a state-of-the-art AAALAC accredited animal facility, a small animal MRI and MRS core facility, an imaging core, and a DNA sequencing facility. Additional information on the Aging and Metabolism Research Program can be found at the Program’s website (http://omrf.org/programs/aging-and-metabolism-research-program/). Other attractive aspects include a generous startup package, institutional support for competitive salaries, comprehensive benefits, and a collegial work environment. Overall, OMRF is committed to creating an attractive position suitable for applicants with a proven track record of high-quality funded research. OMRF is an independent, not-for-profit, biomedical research institute supporting four major interdisciplinary research programs. Our facilities are located adjacent to the campus of the University of Oklahoma Health Sciences Center (OUHSC) in Oklahoma City and the Oklahoma City VA Medical Center. OMRF investigators enjoy close scientific interactions with OUHSC faculty and participate in OUHSC graduate programs. To apply, please send a CV, a letter describing your interest in the position and concise research prospectus, and the names of three references via AMfaculty@omrf.org. Visit jobs.omrf.org for more information. [EOE/AA]

Assistant/Associate/Full Professor: Gonzaga University’s Department of Human Physiology seeks to fill a 9-month tenure-track faculty position, full-time, beginning in fall 2016. We are particularly interested in individuals who are able to teach any lower division course in our undergraduate curriculum, including anatomy and physiology lecture and lab, experimental research design and data analysis, and scientific writing. The candidate must also have experience and a specialty in an area that compliments the expertise of the current faculty and must provide evidence of a willingness and ability to mentor undergraduate students in research.
Essential functions: Teach 9 credits per semester (Fall & Spring) in the program; advise students, guiding them in meeting degree requirements and career goals; participate in departmental councils/committees as well as School of Nursing and Human Physiology and university committees; participate in curriculum review/revision; pursue relevant professional development, presentations at professional meetings, research, and publications in peer-reviewed journals to meet requirements for tenure/promotion. **Required qualifications:** PhD in physiology or related degree; at least 1 year previous teaching experience with undergraduate students; evidence of scholarly productivity; demonstrated ability to articulate a specific agenda for scholarly work and/or research. **Desired qualifications:** An expertise in integrative physiology, including the molecular and genetic basis of exercise, nutrient metabolism, pathophysiology, and/or aging. **Starting date:** September 2016. **Application procedure:** The required application materials include: cover letter, curriculum vitae (CV), statement of teaching philosophy (1 page), list of courses the candidate is interested in teaching or would like to develop that are not currently in the curriculum and articulate how their research interests compliment the research agenda of the department’s current faculty, graduate transcripts, three current letters of reference, and contact details for three professional references. To apply, please visit the Gonzaga University Human Resources website at https://gonzaga.peopleadmin.com/. Applications must be received by midnight PDT on Tuesday, January 12, 2016. Gonzaga University is a Jesuit, Catholic, humanistic institution and is therefore interested in candidates who will contribute to its distinctive mission. Gonzaga University is a committed EEO/AA employer, and diversity candidates are encouraged to apply. All qualified applicants will receive consideration.

Chair: The Oregon Health & Science University (OHSU) School of Medicine invites applications and nominations for the position of Chair of the Department of Physiology and Pharmacology (PHPH). The Department of Physiology and Pharmacology provides an extraordinary, multidisciplinary research and educational environment, with particular research strengths in sensory and autonomic neuroscience, neuroendocrinology, and chemical biology. The Department strategically merges systems physiology with cutting-edge chemical biology, spanning from the molecule to the organism. The next Chair of PHPH will take over a well respected department within a thriving university that is deeply invested in advancing neuroscience, cardiovascular science, cancer biology, infectious disease research, and chemical biology in conjunction with advanced ‘omic, imaging, and computational technologies that support basic research. OHSU is seeking a creative leader and visionary for the Department. S/he will think innovatively about science and strategically build and expand faculty expertise in the Department’s emergent programmatic emphasis of Chemical Biology, while sustaining excellence in systems physiology. Reporting to the Dean of the School of Medicine, the Chair will plan, lead, organize, and direct the academic, research, and business affairs of the Department and represent PHPH in interactions with the University, School of Medicine, other departments, affiliated hospitals, donors, and external constituents. The Chair will also be directly involved in teaching and research. With this in mind, OHSU will consider any outstanding PhD, MD, or MD/PhD scientist with a thriving research program in an area relevant to the broad field of physiology, pharmacology, or chemical biology. The successful candidate will share our vision that the Department of Physiology and Pharmacology can play a major role in assisting OHSU scientists in basic science research and in translating basic science discoveries into improved human disease management. Furthermore, the next Chair of the Physiology and Pharmacology Department will support university-wide efforts toward drug discovery, drug optimization, candidate selection, and basic and translational research. Additionally, the candidate must have a strong track record in the education and training of doctoral students. A cover letter and current CV should be sent via OHSU’s website: https://goo.gl/v9R6xC. OHSU is an equal-opportunity, affirmative-action institution. Women, minorities, individuals with disabilities, and veterans are encouraged to apply. AA/EOE.

Chair: American University of Antigua, College of Medicine invites nominations and applications for the position of Chairperson of the Department of Physiology. The Department is mostly engaged in teaching activities, although scientific research is encouraged. The mission of American University of Antigua College of Medicine is to provide students with an excellent education that is compatible with the most innovative teaching methods
available at the leading U.S. and Canadian medical schools. At the same time, AUA is dedicated to breaking down the barriers that have prevented underrepresented minorities from obtaining a medical education in the U.S. and subsequent licensure. In alignment with this mission, AUA’s students are highly diverse, representing many international backgrounds. The curriculum is designed to provide students with the knowledge and skills necessary to prepare them to successfully practice medicine in the U.S. The successful candidate will have the skills to develop a strategic vision for the Department, a strong record of achievement in scholarship and teaching, and demonstrated administrative/managerial skills. Qualifications include an MD and/or PhD degree, and academic credentials meriting appointment at the rank of professor. Candidates who have teaching experience and research interests in education and how effective teaching techniques are adapted to different learning styles are of particular interest. This position requires an understanding of U.S. MD education requirements, strategic planning, finances, including budgets and the basic principles of faculty practice plans, and operations improvement. Candidates must have demonstrated experience working in and fostering a diverse faculty, staff, and student environment or a commitment to do so as a faculty member at AUA. Duties & responsibilities: 1) Administration: leads the department and the physiology faculty in achieving AUA’s mission. Be responsible for working within and managing the departmental budget. Manages and develops faculty, performs faculty evaluations, and assists with the selection of additional faculty. Participates on faculty committees as appropriate or as assigned by the Executive Dean. Represents the university at community, campus, and professional meetings and events as assigned by the Executive Dean. Confers with other academic staff to explain and formulate admission requirements and course credit policies. 2) Student education: Teaches courses within the department. Interacts directly with students in classroom lecture and lab settings to ensure that all students possess the physiology knowledge necessary to be successful in AUA’s program of medical education, including passing licensing exams. Provides interventions with students to support learning process to maximize their adjustment. Provide academic counseling to students on a one-to-one or small-group basis. Participates in student selection and admission, making admissions recommendations as assigned by the Executive Dean. 3) Program development & implementation: leads the planning, development, implementation, and evaluation of the physiology program, including course material, lecture, and lab sessions based on AUA’s desired outcomes. Develops curricula and recommends curricula revisions and additions. Determines course schedules and coordinates teaching assignments to ensure optimum use of resources. Prepares, administers, scores, and reports on examinations. Additional duties and responsibilities that may be assigned by the Executive Dean. Minimum experience, skills, training/education: 1) MD, DO, or MBBS and/or PhD in human physiology. 2) Demonstrated ability to communicate effectively with students, faculty, and administration. 3) 2+ years of experience in a similar position within the U.S., Canada, or UK institution of higher education or medical training. 4) A minimum of 3 years teaching experience. 5) Computer proficiency utilizing current and new computerized teaching technology and familiarity with communicating platform such as Black Board. Applications including a CV, cover letter, and compensation requirements should be submitted via e-mail to Dr. Reza Sanii (RSanii@auamed.net); subject line should read “Chair Physiology - Applicant Name.” AUA is an equal-opportunity employer.

Lecturer: The Department of Kinesiology at the University of Toledo is one of three departments in the University’s College of Health Sciences. Approximately 600 students are actively pursuing majors in the department at the BS, MS, and PhD levels. Undergraduate students may choose to major in Athletic Training, Exercise Science, or Respiratory Care. Specializations include, Human Performance and Fitness Promotion, and Pre-Health Care professions (Pre-PT/Pre-OT/Pre-PA, and Pre-Med). The department also provides instruction in microbiology, pathophysiology, and anatomy and physiology to many students in non-kinesiology majors. Areas of emphasis at the MS level include Athletic Training and Exercise Physiology. At the doctoral level, students develop an individualized program that reflects a combination of their professional goals and the research specialization of their advisor. Additional information on the department can be found on the college website: http://www.utoledo.edu/healthsciences/depts/kinesiology/index.html. Required qualifications: 1) Master’s degree in Exercise Science or closely associated program; 2) clinical certification/s, credentials from NSCA, and/or ACSM; 3) previous instructional experience. Preferred
qualifications: 1) Terminal degree, earned doctorate in Exercise Physiology or closely associated program; 2) emphasis in one or more of the following areas: Exercise Physiology, Clinical Exercise Physiology, Biomechanics, or Neuromuscular Control; 3) 1-2 years of collegiate-level teaching experience, with innovative teaching technologies, including development of online or hybrid courses; 4) knowledge of, or experience in, working with diverse populations; 5) professional experience in clinical science. Responsibilities: 1) Teach undergraduate courses in one or more of the following related areas: Strength and Conditioning, Exercise Testing and Programming, Biomechanics, Neuromuscular Control; 2) collaborate with students and faculty in the Department of Kinesiology, as well as other appropriate departments across the College and University; 3) participate in department, college, and university service. Applications: All applications must be submitted through https://jobs.utoledo.edu. Click on “Faculty” and select posting no. 0600344. There will be an option to “Apply for this posting.” Applicants must electronically submit their curriculum vitae, statement of research interest, letter of interest, and a list references through this system. If there are any questions, they can be directed to Sue Wambold, search committee chair, at Suzanne.Wambold@UToledo.Edu. Submissions will be accepted until the position is filled. A concerted effort is underway in the College of Health Sciences to ensure and enhance culturally diverse representation among our faculty, students, and staff. Interest from underrepresented groups is strongly encouraged. The University of Toledo is an Equal Opportunity Employer committed to excellence through diversity. An EEO/AA/Title IX employer.

Postdoctoral Fellowship: Sanford Burnham Prebys Medical Discovery Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. SBP takes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. The site at Lake Nona (Orlando) is dedicated to advancing the frontiers of scientific knowledge in life sciences and medicine, with an emphasis on diabetes and obesity research. SBP resources include 175,000 sq. ft. of state-of-the-art laboratory facilities for over 200 faculty and staff. The Lake Nona site has several outstanding technology cores for modern molecular and metabolic research, with a strong interdisciplinary collaborative approach to scientific study. Job description: We are seeking a talented, dynamic, and self-motivated Postdoctoral Research Associate with experience in muscle cell biology/biochemistry to train in Dr. Muthu Periasamy’s lab. A major focus of our research is on SR Ca2+ cycling and how alterations in Ca2+ cycling impact mitochondrial metabolism. The candidate will investigate the role of Sarcolipin, a regulator of SERCA pump, and its impact on mitochondrial metabolism, especially under different pathophysiological states. He/she will be expected to work with genetically altered mouse models to analyze muscle energetics/function. The candidate will also be expected to become proficient in muscle biochemistry, physiology, and mitochondrial biology. The candidate will be encouraged to work independently and become proficient in manuscript/grant writing. There are opportunities to develop ideas, seek independent funding, and get promoted in rank. Required skills/ experience: Requires a PhD degree in biological sciences. Candidates who have research experience in mitochondrial biology/energy metabolism are strongly preferred. Ideal candidate must be motivated, have excellent written/oral communication skills, have a strong desire and ability to work as a team in a collaborative environment. Interested candidates should apply with full CV, statement of research interests, and list of references to itiu@SBPdiscovery.org. Employer name: Sanford Burnham Prebys Medical Discovery Institute. Position location: Orlando, FL.

Postdoctoral Fellowship: A postdoctoral research fellowship position is available to study bladder/lower urinary tract physiology and pathophysiology at Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA. The laboratory is studying signaling pathways involved in regulating bladder epithelial mechanosensory function and bladder smooth muscle motility. Candidates must have a doctoral degree with 0-2 years of postdoctoral experience. Preference will be given to candidates with previous experience with genetic modified mouse model, smooth muscle biology, epithelial biology, or imaging skills. Candidates are expected to be self-motivated and have excellent writing and communication skills. Please send a cover letter with a brief statement of professional goals, a CV with
a list of prior publications, and names of 3 references
to: Weiqun Yu, Ph.D. Assistant Professor of Medicine
Beth Israel Deaconess Medical Center & Harvard
Medical School Boston, MA 02215. E-mail: wyu2@bidmc.
harvard.edu. The Beth Israel Deaconess Medical Center/
Harvard Medical School is an Affirmative Action/Equal
Opportunity Employer.

Postdoctoral Fellowship: The University of Washington,
Division of Nephrology, is seeking applicants for the
UW Nephrology Training Program, under the direction
of Drs. Stuart Shankland and Ying Zheng. This is a
12-month, full-time position with the title of Senior
Fellow Trainee (job class code 442). The successful
candidate must have a PhD in the biomedical fields or
bioengineering, an MD, or equivalent degree. A strong
record of productivity and interest in nephrology and/
or bioengineering is desirable. A successful applicant
must also be eligible for a NIH T32 Fellowship. In
order to be eligible for the NIH T32 Fellowship, per
NIH regulations, the individual to be trained must be
a citizen or noncitizen national of the United States or
have been lawfully admitted for permanent residence
at the time of appointment. University of Washington is
an affirmative-action and equal-opportunity employer.
All qualified applicants will receive consideration for
employment without regard to race, color, religion,
sex, sexual orientation, gender identity, national origin,
age, protected veteran or disabled status, or genetic
information. Interested applicants should send the
following application materials by e-mail to Drs. Stuart
Shankland (stuartjs@uw.edu) and Ying Zheng (yingzy@
w.edu): current curriculum vitae, statement of research
interest (1-2 pages maximum), copy of graduate school
or medical school transcript, and three references with
names and contact information.

Postdoctoral Fellowship: The National Space Biomedical
Research Institute (NSBRI)-sponsored Mentored
Research Program in Space Life Sciences at Texas A&M
University (TAMU) is currently accepting applications
for Fall 2016. Students participating in this program
work toward a PhD in Biomedical Engineering, Genetics,
Nutrition, Kinesiology, or Nuclear Engineering (Health
Physics), or a MD/PhD or PhD in Medical Sciences
from the Texas A&M University Health Sciences Center.
Students will focus their research on space environment-
induced bone loss, muscle wasting, cosmic radiation
damage, and/or changes in metabolism. The Space
Life Sciences graduate program at TAMU is designed
with immersive components including fundamental
courses in space life sciences, individual research,
and an experiential component with work at Johnson
Space Center, Brookhaven National Laboratory, and/or
University of Texas Medical Branch. All trainees
participate in outreach by teaching elements of space
life sciences in a K-12 setting. To learn more about the
program, please visit [http://SLSGraduateProgram.tamu.
du](http://SLSGraduateProgram.tamu.edu). The deadline for submitting an application package
is February 15, 2016. For more information, please contact
Dr. Nancy Turner, Texas A&M University Director,
Mentored Research Program in Space Life Sciences, 214
Cater-Mattil 2253 TAMU, College Station, TX 77843;
phone: 979-845-4426; e-mail: n-turner@tamu.edu.

Postdoctoral Fellowship: Brown University is seeking
a well published PhD or MD/PhD postdoctoral
fellow, to be supported by a recently funded grant, to
investigate the role of natriuretic peptide receptor-C
(NPR-C) protecting against lung vascular injury
using genetically altered mice models and in vitro
approaches. Experience in cell biology, physiology, and
biochemistry are desired. Send your resume and contact
references as pdf to Elizabeth_Harrington@brown.edu and
James_Klinger@brown.edu. Brown University is an equal-
opportunity and affirmative-action employer.

A charitable bequest is an easy way for you to leave a lasting
legacy and help further the mission of the American Physiological
Society. Here are some of the benefits of bequest giving:

- It costs you nothing today to make a bequest
- You can still benefit your heirs, as you wish
- A bequest may produce estate tax savings
- Your bequest can be changed down the road
- You can leave a personal legacy of your choosing

To learn more about bequests, please contact us at (301) 634-7406. Ask for your FREE Wills Kit!
Meetings & Congresses

2016

January 13-16

January 16-18
International 3rd Caribbean Biomedical Research Days Conference (CBRD-2016), Rodney Bay, St. Lucia, West Indies. Information: e-mail: info@stressandbehavior.com; internet: http://www.stressandbehavior.com/Years/2016/Carribean/Carribean2016.html

March 6-8

April 2-6
2016 Experimental Biology, San Diego, CA.

June 20-24
APS Institute on Teaching and Learning, Madison, Wisconsin. #ITLPhysiology

July 21-25

July 29-31
APS/TPS Joint Meeting: Physiology 2016, Dublin, Ireland. #Physiology2016

August 24-27
APS Conference: Inflammation, Immunity and Cardiovascular Disease, Westminster, Colorado.

November 2-4
APS Intersociety Meeting: The Integrative Biology of Exercise VII, Phoenix, Arizona.

2017

April 22-26
2017 Experimental Biology, San Francisco, CA.

May 27-June 1

August 1-5
Conference Program & Abstracts

ET14

SAVANNAH

www.the-aps.org/et-14
APS Council

President
Patricia E. Molina

Past President
David M. Pollock

President-Elect
Jane F. Reckelhoff

Barbara T. Alexander
M. Harold Laughlin
Rudy M. Ortiz

John Chaitham
Lisa Leon
Irene C. Solomon

David Guterman
Marshall H. Mentrose
Bill J. Yates

Ex officio Members

Hannah V. Carey
Robert Hester
Curt Sigmund

Martin Frank
Kevin C. Kregel

Meredith Hay
Wolfgang Kuebler
J. Michael Wyss

Conference Organizers

Adviye Ergul
Georgia Regents Univ.

Anil Gulati
Midwestern Univ.

David M. Pollock
Univ. of Alabama at Birmingham

Scientific Advisory Committee

Anna Bagnato, Italy
Marilena Loizidou, UK
John Pernow, Sweden

Joey Granger, USA
Janet Maguire, UK
Rita Tostes, Brazil

Constantino Iadecola, USA
Yasuo Matsumura, Japan
Ivana Vaneckova, Czech Rep.

International Advisory Committee

Matthias Barton, Switzerland
Anthony Davenport, UK
David M. Pollock, USA

Ariela Benigni, Italy
Noriaki Emoto, Japan
David Webb, UK

Pedro D’Orleans-Juste, Canada
Donald Kohan, USA
Masashi Yanagisawa, Japan

Acknowledgements

The Meeting Organizers and The American Physiological Society gratefully recognize the generous financial support from the following:

Elsevier/Life Sciences
NIH, National Heart, Lung, and Blood Institute
Retrophin, Inc.
<table>
<thead>
<tr>
<th>Wednesday, September 2</th>
<th>Thursday, September 3</th>
<th>Friday, September 4</th>
<th>Saturday, September 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM Registration</td>
<td>7:00 AM Registration</td>
<td>7:30 AM Registration</td>
<td>7:30 AM Registration</td>
</tr>
<tr>
<td></td>
<td>8:00—10:00 AM Symposia I</td>
<td>8:00—10:00 AM Symposia V</td>
<td>8:00—10:00 AM Symposia IX</td>
</tr>
<tr>
<td></td>
<td>Novel Aspects of the Endothelin System</td>
<td>Endothelin and End-Organ Injury</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td></td>
<td>Ivana Vaneckova</td>
<td>Noriaki Emoto</td>
<td>Constantino Iadecola</td>
</tr>
<tr>
<td></td>
<td>Anthony Davenport</td>
<td>Matthias Barton</td>
<td>Janet Maguire</td>
</tr>
<tr>
<td>10:30 AM—12:00 Noon</td>
<td>10:30 AM—12:00 Noon Symposia II</td>
<td>10:30 AM—12:00 Noon Symposia VI</td>
<td>10:30 AM—12:00 Noon Symposia X</td>
</tr>
<tr>
<td></td>
<td>The Immune System and Endothelin</td>
<td>Endothelin, Angiotensin and Vascular Function</td>
<td>Novel Integration</td>
</tr>
<tr>
<td></td>
<td>Ariela Benigni</td>
<td>Anna Bagnato</td>
<td>David Webb</td>
</tr>
<tr>
<td></td>
<td>John Pernow</td>
<td>Marilena Loizidou</td>
<td>Adviye Ergul</td>
</tr>
<tr>
<td>12:00 Noon—1:00 PM</td>
<td>12:00 Noon—1:00 PM Lunch</td>
<td>12:00 Noon—1:00 PM Lunch</td>
<td>12:00 Noon—1:30 PM Lunch</td>
</tr>
<tr>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00—2:30 PM</td>
<td>1:00—2:30 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poster Session 1</td>
<td>Poster Session 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odd Numbered Posters</td>
<td>Even Numbered Posters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30—4:00 PM</td>
<td>2:30—4:00 PM</td>
<td>1:30—3:30 PM</td>
<td></td>
</tr>
<tr>
<td>Symposia III</td>
<td>Symposia VII</td>
<td>Symposia XI</td>
<td></td>
</tr>
<tr>
<td>ET, Sex, and Pregnancy</td>
<td>Endothelin and Fluid-Electrolyte Balance</td>
<td>Endothelin Therapeutics—</td>
<td></td>
</tr>
<tr>
<td>Rita Tostes</td>
<td>Yasuo Matsumura</td>
<td>Where Are We?</td>
<td></td>
</tr>
<tr>
<td>Donald Kohan</td>
<td>David M. Pollock</td>
<td>Jennifer Pollock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jennifer Sullivan</td>
<td></td>
</tr>
<tr>
<td>4:30—5:30 PM</td>
<td>4:30—5:30 PM</td>
<td>3:30—4:30 PM</td>
<td></td>
</tr>
<tr>
<td>Symposia IV</td>
<td>Symposia VIII</td>
<td>Conference Summary and Highlights</td>
<td></td>
</tr>
<tr>
<td>Role of ET in the Vasculature</td>
<td>Pulmonary Function</td>
<td>Participant Discussion and Feedback</td>
<td></td>
</tr>
<tr>
<td>Joey Granger</td>
<td>Martine Clozel</td>
<td>Closing Remarks</td>
<td></td>
</tr>
<tr>
<td>Anil Gulati</td>
<td>Pedro D’Orleans-Juste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00—8:00 PM</td>
<td>5:30—7:00 PM</td>
<td>7:00—10:00 PM</td>
<td></td>
</tr>
<tr>
<td>Welcome Address and Opening Reception</td>
<td>Trainee Mixer</td>
<td>Special Event Banquet</td>
<td></td>
</tr>
<tr>
<td>Trainee Hot Topics</td>
<td></td>
<td>Mansion on Forsythe Park</td>
<td>Ticket needed for entry (see registration desk for details)</td>
</tr>
<tr>
<td>Happy Hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelly Hyndman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joshua Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GENERAL INFORMATION

Location:
The 2015 APS Conference: 14th International Conference on Endothelin, Physiology, Pathophysiology and Therapeutics will be held September 2—5, 2015 at the Hyatt Regency Savannah Hotel, 2 West Bay Street, Savannah, GA 31401, USA, telephone (912) 238-1234, FAX: (912) 721-4671.

Onsite Registration Hours:
- Wednesday, September 2………3:00—8:00 PM
- Thursday, September 3………7:00 AM—6:00 PM
- Friday, September 4……….. 7:30 AM—6:00 PM
- Saturday, September 5……….. 7:30AM—3:30 PM

On-Site Registration Fees:
- APS Member .. $600
- APS Retired Member ... $450
- Nonmember ... $750
- Postdoctoral ... $500
- Student ... $450

The registration fee includes entry into all scientific sessions, opening reception, and the special event at the Mansion on Forsyth Park*.

*Must have a ticket for entry.

Payment Information:
Registrants may pay by institutional or personal check, traveler’s check, MasterCard, VISA or American Express or in United States Dollars. Checks must be payable to “The American Physiological Society” and drawn on a United States bank payable in US dollars.

Student Registration:
Any student member or regularly matriculated student working toward a degree in one of the biomedical sciences is eligible to register at the student fee. Nonmember postdoctoral fellows, hospital residents and interns, and laboratory technicians do not qualify as students. Nonmember students who register onsite must provide a valid university student ID card. APS student members should present their current APS membership card indicating their student category status.

Postdoctoral Registration:
Any person who has received a Ph.D. degree in physiology or related field, within four years of this meeting, as attested to by the department head is eligible to register at the postdoctoral fee. A statement signed by the department head must accompany the registration form and remittance when registering.

Press:
Press badges will be issued at the APS registration desk, only to members of the working press and freelance writers bearing a letter of assignment from an editor. Representatives of allied fields (public relations, public affairs, etc.) must register as nonmembers.

Special Ticketed Event:
Join your colleagues for a special evening event and southern hospitality at the Mansion on Forsyth Park. Enjoy authentic southern cuisine while catching up with old and new acquaintances. The cost of the event is included in your registration fee. If you haven’t already signed up for the event, please visit the registration desk on the second floor of the hotel. Tickets are limited and are on first come, first-served basis. Transportation is provided and will begin boarding at 6:45 PM in front of the hotel.

Program Objective:
Upon completing the program, participants should gain more knowledge in the physiology and pathophysiology of endothelin. The goal of the conference is to accumulate together a critical mass of scientists and those in industry who have interests in the important role of endothelin to promote the exchange of ideas and potential collaborations in the future.

Target Audience:
The intended audience for this conference includes all levels of researchers working in the field of endothelin.

Don’t forget to join us at the ET-14 Welcome Reception

Harborside Center East
(street level of hotel)

6:00—8:00 PM
THURSDAY, SEPTEMBER 3, 2015

Symposia I

1.0 NOVEL ASPECTS OF THE ENDOTHELIN SYSTEM
Thurs., 8:00—10:00 AM, Ballroom A.

Chairs:
- Ivana Vanečková, Inst. of Physiology, Prague, Czech Rep.
- Anthony Davenport, Univ. of Cambridge, UK.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>1.1 New Insights in ET Receptor Pharmacology. Janet Maguire, Univ. of Cambridge, UK.</td>
</tr>
<tr>
<td>8:45 AM</td>
<td>1.3 Autocrine Endothelin 1 Signaling Promotes Osteoblast Growth and Mineral Deposition Via Induction of miR 126-3p. Michael G. Johnson, Univ. of Wisconsin, Madison. (3.59).</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>1.4 Novel UVR-induced Melanoma Mouse Model Based on Endothelin 3 Overexpression in Conjunction with Deficiency of the Nucleotide Excision Repair Pathway. Diana Cardero, Florida Instnl. Univ., Miami. (3.67).</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>1.6 Early-life Stress Induces Epigenetic Regulation of the ET System in Adult Male Mice. Dao Ho, Univ. of Alabama at Birmingham. (3.40).</td>
</tr>
</tbody>
</table>

Symposia II

2.0 THE IMMUNE SYSTEM AND ENDOTHELIN
Thurs., 10:30 AM—12:00 Noon, Ballroom A.

Chairs:
- Arida Benigni, Mario Negri Inst. for Pharmacological Res., Bergamo, Italy.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 AM</td>
<td>2.1 Inflammation, Immunity and Hypertension. David Harrison, Vanderbilt Univ.</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>2.2 Macrophage Endothelin-B Receptors Clear Endothelin-1 & Regulate Blood Pressure. Neeraj Dhaun, Univ. of Edinburgh, UK. (3.61).</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>2.4 Role of the Myeloid Endothelin-B Receptor in Angiotensin II Mediated End-organ Damage. Lea Guyonnet, INSERM, PARCC, Paris, France. (3.34).</td>
</tr>
</tbody>
</table>

Photography is not permitted during the scientific sessions or in the poster room.

Symposium III

4.0 ET, SEX, AND PREGNANCY
Thurs., 2:30—4:00 PM, Ballroom A.

Chairs:
- Rita Tostes, Univ. of Sao Paulo, Ribeirao Preto, Brazil.
- Donald Kohen, Univ. of Utah Hlth. Sci. Ctr.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM</td>
<td>4.1 Sex and Hypertension. Jennifer Sullivan, Georgia Regents Univ.</td>
</tr>
<tr>
<td>3:15 PM</td>
<td>4.2 Endothelin-1 (ET-1) Regulates the Expression of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of MMPs in Human First Trimester Trophoblasts via ETB Receptor: A Possible Role in Trophoblast Invasion. Alejandro Majali-Martinez, Med. Univ. of Graz, Austria. (3.56).</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>4.3 Attenuation of Endothelin-1-induced Cardiomyocyte Hypertrophy Through Estrogen Pretreatment. Nobutake Shimojo, Univ. of Tsukuba, Japan. (3.54).</td>
</tr>
<tr>
<td>3:45 PM</td>
<td>4.4 Endothelin-1: A Final Common Pathway Linking Placental Ischemia to Endothelial Dysfunction and Hypertension During Preeclampsia. Joey Granger, Univ. of Mississippi Med. Ctr. (3.30).</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>4.5 Data-listed Endothelin Receptor Type B (ETB) Deficiency Results in Greater Blood Pressure Levels During Pregnancy and in Response to Placental Ischemia-induced Hypertension in Rats. F. Spradley, Univ. of Mississippi Med. Ctr. (3.11).</td>
</tr>
</tbody>
</table>

Symposium IV

5.0 ROLE OF ET IN THE VASCULARATURE
Thurs., 4:30—5:30 PM, Ballroom A.

Chairs:
- Joey Granger, Univ. of Mississippi Med. Ctr.
- Anil Gulati, Midwestern Univ.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00 PM</td>
<td>5.1 ET-1 in the Heart in Health and Disease. Noriaki Emoto, Kobe Univ., Japan.</td>
</tr>
</tbody>
</table>

Trainee Mixer

6.0 TRAINEE MIXER
Thurs., 5:30—7:00 PM, Ballroom A.

Chairs:
- Kelly Hyndman, Univ. of Alabama at Birmingham.
- Joshua Speed, Univ. of Alabama at Birmingham.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:40 PM</td>
<td>6.1 Endothelial-Derived Endothelin-1 Contributes to Renal Dysfunction and Mortality in Sickle Cell Mice. Brandon Fox, Univ. of Alabama at Birmingham. (3.19).</td>
</tr>
</tbody>
</table>
DAILY SCHEDULE

5:42 PM | 6.2 | Endothelin-1 Increases Glomerular Permeability in Sickle Cell Mice. Malgorzata Kasztan, Univ. of Alabama at Birmingham. (3.14).

5:44 PM | 6.3 | Gender Comparison of Recovery from Intravenous and Inhalational Anaesthetics Among Adult Patients in South-West Nigeria. Yewande Okunoren-Oyekenu, Univ. of Leicester, UK. (3.71).

5:50 PM | 6.6 | The Role of Endothelin System in Renal Structure and Function During the Postnatal Development of the Rat Kidney. Maria Florencia Albertoni, Univ. of Buenos Aires, Argentina. (3.5).

5:52 PM | 6.7 | TUDCA Attenuates High Salt-Induced Renal Cortical Injury in ETB Receptor Deficient Rats by Decreasing Apoptosis. Randee Sedaka, Univ. of Alabama at Birmingham. (3.5).

5:52 PM | 6.8 | ETA Receptor Blockade Improves the Differential Diurnal Natriuretic Response to an Acute Salt Load in Male and Female ETB Deficient Rats. Jermaine Johnston, Univ. of Alabama at Birmingham. (3.13).

5:56 PM | 6.10 | Clinical use of Serum Big Endothelin-1 Levels as a Tumour Marker for Haemangiosarcoma. Shinya Fukumoto, Rakuno Gakuen Univ., Ebetsu, Japan. (3.50).

5:58 PM | 6.11 | Treatment with DPP4 Inhibitor Linagliptin Reduces Plasma ET-1 and ET-1-induced Cardiovascular Hyper-reactivity in Diabetes. Trevor Hardigan, Georgia Regents Univ. (3.41).

6:00 PM | 6.12 | Endothelins as Markers of Cardiovascular Protection in Adults with Isolated Deficiency of Growth Hormone (IDGH). Sydney Leao, Federal Univ. of São Paulo, Brazil. (3.52).

FRIDAY, SEPTEMBER 4, 2015

Symposia V

7.0 ENDOTHELIN AND END-ORGAN INJURY
Fri., 8:00—10:00 AM, Ballroom A.

Chairs: Noriaki Emoto, Kobe Univ., Japan.
Matthias Barton, Univ. of Zurich, Switzerland.

8:00 AM | 7.1 | Endothelin and Diabetic Complications. John Pernow, Karolinska Inst., Stockholm, Sweden.

7.2 | 8:30 AM | Knockout of Endothelin-1 in Vascular Endothelial Cells Ameliorates Cardiac Mitochondria Dysfunction After Myocardial Infarction in Diabetes Type 2 Mice. Harry S. Muliawan, Kobe Univ., Japan. (3.53).

7.3 | 8:45 AM | The Role of Endothelin in the Regulation of Blood Pressure in Early Diabetes Mellitus. Geoff CULSHAW, Univ. of Edinburgh, UK. (3.4).

9:00 AM | 7.4 | The Endothelin System Mediates Renal Endoplasmic Reticulum Stress Development. Carmen De Miguel, Univ. of Alabama at Birmingham. (3.10).

7.6 | 9:30 AM | Renal Vascular Regeneration by Angiotensin II Antagonism is Due to Abrogation of ET-1/ETAR Signaling. Ariela Benefi, Inst. di Ric. Farmacol. Mario Negri, Bergamo, Italy. (3.4).

Symposia VI

8.0 ENDOTHELIN, ANGIOTENSIN AND VASCULAR FUNCTION
Fri., 10:30 AM—12:00 Noon, Ballroom A.

Chairs: Anna Bagnato, Inst. Natl. Tumori Regina Elena-IFO, Rome, Italy.
Marilena Loizidou, Univ. Coll., London, UK.

8.2 | 11:00 AM | Endothelin-1 Stimulates Endothelial-derived Microparticle Release. Philip J. Kavlich, Univ. of Colorado, Boulder. (3.39).

8.3 | 11:15 AM | Endothelin Receptor Signaling and Age Related Deregulation of Cerebral Artery Myogenic Tone. Adel Zrein, Dalhousie Univ., Halifax, Canada. (3.75).

8.4 | 11:30 AM | High Dietary Fat Intake is Associated with Enhanced Endothelin-1 Vasoconstrictor Tone. Caitlin Dow, Univ. of Colorado, Boulder. (3.35).

1:00 PM POSTER SESSION II
Ballroom BCDE.
Friday: 1:00—2:30 PM
Even numbered poster boards presenting.
Symposia VIII

10.0
PULMONARY FUNCTION
Fri., 4:30—6:00 PM, Ballroom A.

Chairs:
Martine Clozel, Actelion Pharma., Ltd., Allschwil, Switzerland.
Pedro D’Orleans-Juste, Univ. of Sherbrooke, Canada.

4:30 PM
10.1 Chronic Hypoxia in Endothelin-1 Transgenic (ETTG) Mice Generates Moderate Pulmonary Hypertension, Not Severe Pulmonary Hypertension and Its Plexiform Lesions. **Muhammed Satwiko, Kobe Univ., Japan. (3.81).**

5:00 PM
10.2 Postnatal Ece1 Ablation Causes Severe, Progressive Pulmonary Disease. **Jasmin Kristiansen, Univ. of Wisconsin, Madison. (3.84).**

5:15 PM
10.3 The Evaluation of Endothelin Receptor Antagonist for Pulmonary Hypertension with Lung Disease. **Kazuhiko Nakayama, Kobe Univ. Japan. (3.88).**

Sat., 1:30—3:00 PM, Ballroom A.

Chairs:
Jennifer S. Pollock, Univ. of Alabama at Birmingham.
Jennifer Sullivan, Georgia Regents Univ.

1:30 PM
13.1 Endothelin Therapeutics in Cancer—Where Are We? **Anna Bagnato, Inst. Natl. Tumori Regina Elena-IFO, Rome, Italy.**

1:55 PM
13.2 Endothelin Antagonists in Diabetic Nephropathy. **Donald Kohan, Univ. of Utah Hlth. Sci. Ctr.**

2:20 PM
13.3 Endothelin Antagonism, Where Next? **Pierre-Louis Tharaux, INSERM, Paris, France.**

2:45 PM
13.4 Review of Clinical Development of Sparsan, a Dual-acting Angiotensin and Endothelin Receptor Antagonist. **Radko Komers, Retrophin, Inc., Cambridge, MA.**

3:10 PM
13.5 Endothelin Research and Drug Discovery. **Martine Clozel, Actelion Pharma., Ltd., Allschwil, Switzerland.**
DAILY SCHEDULE

POSTER SESSIONS
Ballroom BCDEF

Thursday: 1:00—2:30 PM, Odd numbered poster boards presenting. Friday: 1:00—2:30 PM, Even numbered poster boards presenting.

<table>
<thead>
<tr>
<th>No.</th>
<th>Poster Board</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.2</td>
<td>Regulation of Collecting Duct Endothelin-1 Production by Flow and Osmolality.</td>
<td>Y. Gao, M. Pandit, and D. Kohan. University of Utah.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>High Salt Intake Increases ET-1 Mediated Natriuresis and Diuresis via the ETB Receptor in Rats.</td>
<td>C. Jin, and D. M. Pollock. University of Alabama at Birmingham.</td>
</tr>
<tr>
<td>Poster Board</td>
<td>DAILY SCHEDULE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3.21 ETA Receptor Activation Contributes to T Cell Infiltration Following Renal Ischemia-reperfusion Injury. E. Boesen, Univ. of Nebraska Med. Ctr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.23 Endothelin B Receptor Agonist, IRL-1620, Provides Neuroprotection and Enhances Angiogenesis in Diabetic Rats with Cerebral Ischemia. A. Gulati, M. Husby, and M. Leonard. Midwest Univ.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.30 Endothelin-1: A Final Common Pathway Linking Placental Ischemia to Endothelial Dysfunction and Hypertension During Preeclampsia. J. Granger. Univ. of Mississippi Med. Ctr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3.31 Induction of Long-term Endothelin-1 Over-expression Causes Blood Pressure Rise and Small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3.35 High Dietary Fat Intake is Associated with Enhanced Endothelin-1 Vasoconstrictor Tone. C. Dow, J. Greiner, N. Schuette, B. Stauffer, and C. DeSouza. Univ. of Colorado, Boulder, and Univ. of Colorado, Denver.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3.36 Vitamin C Supplementation Reduces ET-1 System Activity in Overweight and Obese Adults. C. Dow, J. Greiner, D. Templeton, B. Stauffer, and C. A. DeSouza. Univ. of Colorado, Boulder, and Univ. of Colorado, Denver.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3.37 Borderline-high Triglycerides and Endothelin-1 Vasoconstrictor Tone. C. Dow, J. J. Greiner, K. J. Diehl, B. Stauffer, and C. A. DeSouza. Univ. of Colorado, Boulder, and Univ. of Colorado, Denver.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3.38 C-reactive Protein Does Not Influence Endothelin-1 System Activity in Healthy Adults. C. Dow, J. Greiner, G. Linzenberg, B. Stauffer, and C. A. DeSouza. Univ. of Colorado, Boulder, and Univ. of Colorado, Denver.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 41 | **3.41** Treatment with DPPIV Inhibitor Linagliptin Reduces Plasma ET-1 and ET-1-induced Cerebrovascular Hyper-reactivity in
DAILY SCHEDULE

Poster Board

45 Effects of Endothelin Antagonism on Microvascular Complications Such as Diabetic Erectile Dysfunction and Diabetic Retinopathy are Partly Mediated Through Restoration of Altered VEGF Signaling in Rats. S. Jesmin, S. Zaedi, K. Aonuma, T. Miyasho, T. Miyasho.

51 Regulation of the Cardiac Endothelin System and Cardiomyocyte Hyper trophy by GPER. M. Meyer, N. Fredette, C. Daniel, K. Aumann, M. Barton, and E. Prossnitz. Univ. of New Mexico Hlth. Sci. Ctr., Univ. of Erlangen-Nurnberg, Germany, and Univ. of Zurich, Switzerland.

55 Withdrawn.

56 Endothelin-1 (ET-1) Regulates the Expression of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of MMPs in Human First Trimester Trophoblasts via ETB Receptor: A Possible Role in Trophoblast Invasion. A. Majali-Martinez, P. Veckly, J. Polleheimer, M. Knüfler, G. Desoye, and M. Dieber-Rotheneder. Med. Univ. of Graz, Austria, and Med. Univ. of Vienna, Austria.

59 Autocrine Endothelin 1 Signaling Promotes Osteoblast Growth and Mineral Deposition Via Induction of miR 126-3p. M. G. Johnson, J. Kris-

3.64 Central Endogenous Endothelins (ETs) are Involved in the DOCA-Salt Hypertension. Interactions Between ETs Receptor A (ETA) Blockade and Tyrosine Hydroxylase (TH) in the Anterior (AH) and Posterior Hypothalamus (PH). M. Guilt, V. Morales, L. Cassignotti, C. Alvarez, L. Bianciotti, and M. Vatta. Univ. of Buenos Aires, Argentina.

3.71 Gender Comparison of Recovery from Intravenous and Inhalational Anaesthesia Among Adult Patients in South-West Nigeria. Y. Okumoren-Oyekenu, A. Sanusi, and G. Gbotosho. Univ. of Ibadan, Nigeria, and Univ. of Leicester, UK.

3.73 Development and Validation of a Reversed-Phase HPLC Method for the Analysis of Endothelin-B receptor agonist, IRL-1620. M. Lavhale, E. J. Kumur, and A. Gulati. Pharmazz India Private Ltd., Greater Noida, India, and Midwestern Univ.

3.75 Endothelin Receptor Signaling and Age Related Deregulation of Cerebral Artery Myogenic Tone. A. Zrein, J. Zhu, A. Bagher, S. Howlett, E. Denovan-Wright, and M. Kelly. Dalhousie Univ., Halifax, Canada.

3.78 Differential Role of ETA and ETB Receptors in CNS Parameters. Y. Gupta, M. Pahuja, R. Kumar, S. Gupta, and R. Arora. All India Inst. of Med. Sci., New Delhi, India.

3.80 The Importance of Cell Cycle Stretch in Counting Regulating Chronic Thromboembolic Pulmonary Hypertension by Suppressing ERK1/2 Signaling. Y. Suzuki, K. Nakayama, H. S. Multi.

2015 APS/ET-14 International Conference on Endothelin: Physiology, Pathophysiology and Therapeutics

Abstracts of Invited and Contributed Presentations

1.0 Novel Aspects of the Endothelin System
2.0 The Immune System and Endothelin
3.0 Submitted Abstracts
4.0 ET, Sex and Pregnancy
5.0 Role of ET in the Vasculature
7.0 Endothelin and End-Organ Injury
8.0 Endothelin, Angiotensin and Vascular Function
9.0 Endothelin and Fluid Electrolyte Balance
12.0 Novel Integration
13.0 Endothelin Therapeutics—Where are we?

Author Index
1.0 NOVEL ASPECTS OF THE ENDOTHELIN SYSTEM

1.1 NEW INSIGHTS IN ET RECEPTOR PHARMACOLOGY

Janet Maguire1, Rhoda Kae2, and Anthony Davenport3

1EMIT, Univ. of Cambridge, Level 6 ACCI, Box 110 Addenbrookes Hosp., Cam-
bridge, CB2 0QQ, UK.

Understanding endothelin receptor pharmacology is essential to unravelling the role of these important proteins in health and disease. Recent advancements in comprehension of how G-protein coupled receptors (GPCR’s) interact with their ligands to transmit extracellular signals into cellular responses has expanded2, with some of the basic tenets of pharmacology requiring re-evaluation. This should prompt researchers to look at published data with a new perspective and to rethink the design of future experiments. The two endothelin receptors, ETα and ETβ, are defined by their rank order of potency for the three endogenous peptides, ET-1, ET-2 and ET-3. Selective agonists are available for the ETβ receptor but, interestingly, not the ETα receptor. Receptor selective and non-selective antagonists have been developed as important research tools for defining receptor function and as clinically significant drugs for pulmonary arterial hypertension. However, some of the pharmacology of the two receptors has been difficult to reconcile, for example differences in ligand affinity for cloned and native receptors and ligand dependence of antagonist affinities. The aim of this talk is to revisit what we know about the pharmacology of endothelin receptors and to re-evaluate these data in the light of recent structural studies1 and the discovery of GPCR biased signalling. 1. Rosenbaum DM, Rasmussen SG, Kobilka BK. 2009. The

2. Revisiting what we know about the pharmacology of endothelin receptors and to re-evaluate these data in the light of recent structural studies1 and the discovery of GPCR biased signalling. 3.0 POSTERS

2.0 THE IMMUNE SYSTEM AND ENDOTHELIN

2.1 INFLAMMATION, IMMUNITY AND HYPERTENSION

David Harrison

1Internal Med., Vanderbilt Univ., 2220 Pierce Ave, Nashville, TN, 37232-6602.

Hypertension remains an enormous health care burden that affects 30% of Western populations. Despite its prevalence the cause of most cases of hypertension remain unknown. Our laboratory has defined a novel mechanism for hypertension involving adaptive immunity. We found that mice lacking lymphocytes (RAG-1-/- mice) develop blunted hypertensive responses to a variety of stimuli including chronic angiotensin II infusion, DOCA-salt challenge and norepinephrine infusion. Adoptive transfer of T cells, but not B cells, restores the hypertensive responses to these stimuli. Hypertension is associated with the infiltration of T cells into the kidney and vasculature, where they release cytokines, including IFN-γ, IL-17A, and TNFα, which promote sodium retention, vasoconstriction and oxidative injury. Recently, we have found that angiotensin II has striking effects on dendritic cells (DCs), promoting their propensity to activate T cells. Our data indicate that angiotensin II infusion increases DC superoxide production by 5-fold and causes a striking accumulation isocitlates, oxidized products of anhydroic acid in these cells. These form covalent bonds to lysines of pro-
tains and these modified proteins become immunogenic. Several isoketal scavengers, including 2-hydroxybenzylamine (2-HOBA) prevent DC activation, the ability of DCs to stimulate T cell proliferation and prevent hypertension. A major impetus for immune cell activation seems to be increased sympathetic outflow, stimulated by the central actions of angiotensin II. By lesionsing the AV3V region of the forebrain of mice or inactivating the NADPH oxidase in the subfornical organ using Cre Lox mice or inactivating the NADPH oxidase in the subfornical organ using Cre Lox technology, we have prevented the central actions of angiotensin II and found that this inhibits both T cell activation and hypertension. Renal denervation likewise prevents activation of DCs in the kidney and the accumulation of activated DCs in the spleen. Thus, the kidney seems to be a major site of DC activation in hypertension. In summary, we have identified a new mechanism underlying hypertension and a potential new therapy for this common and yet difficult to manage disease.

3.0 POSTERS

3.1 RENAL VASCULAR REGENERATION BY ANGIOTEN-SIN II

ANTAGONISM IS DUE TO ABROGATION OF ET-1/ETα-R SIGNALING

Ariela Benigni1, Lorena Longaretti1, Elena Gagliardi1, Sara Conti1, and Giuseppe Remuzzi1

1Internal Med., Vanderbilt Univ., 2220 Pierce Ave, Nashville, TN, 37232-6602.

David Harrison

1Internal Med., Vanderbilt Univ., 2220 Pierce Ave, Nashville, TN, 37232-6602.

Tubule fluid flow increases IMCD ET-1 protein levels, ET-1 mRNA content was taken as an index of ET-1 protein levels. For all studies, N=10 per data point. Results: ET-1 mRNA increased by 219 ± 21% in response to flow (compared to cells not exposed to flow). When perfusate osmolality was increased from 300 to 450 mOsm/L with NaCl, urea or mannitol, the ET-1 flow response increased to 450-500% over that seen in cells not exposed to flow (but containing 450 mOsm/L). This heightened flow response to osmolality was not altered by inhibition of the epithelial sodium channel (using 0.2 µM benzamil). While the ET-1 flow response under 300 mOsm/L conditions was blocked by chelation of intracellular calcium (50 µM BAPTA-AM), calcineurin inhibition of NFAT5 with 10 µM rottlerin abolished the ET-1 flow response under 300 mOsm/L conditions. The ratio of IMCD3 mRNA and protein levels is determined, since ET-1 protein is below de-
tection levels due to the small number of cells and since ET-1 mRNA almost always parallels ET-1 protein levels, ET-1 mRNA content was taken as an index of ET-1 ETα-R signaling.

3.2 REGULATION OF COLLECTING DUCT ENDOTHELIN-1 PRODUCTION BY FLOW AND OSMOLALITY

Ying Gao1, Meghna Paradi2, and Donald Kohan3

1Div. of Nephrology, Univ. of Utah, 1900 E. 30 N., Salt Lake City, UT, 84132.

Background: Endothelin-1 (ET-1) produced by the renal collecting duct (CD) is an important regulator of blood pressure and urinary sodium and water excretion. CD ET-1 production is increased by high salt intake, since ET-1 acts as a co-activator in incretory of CD sodium and water reabsorption, this process facilitates normalization of body fluid volume. The mechanisms coupling salt intake to CD ET-1 synthesis are incompletely understood. Herein, we have investigated the role of tubule fluid flow and tubule fluid solute delivery in stimulating CD ET-1 production since both of these factors are augmented by a high salt diet. Methods: A mouse inner medullary collecting duct cell line (IMCD3) was exposed to stationary conditions or laminar flow (using Hanks Balanced Salt Solution) at a shear stress of 2 dyn/cm² for 2 hr at 37°C (conditions determined to maximize the ET-1 flow response). The ratio of IMCD3 ET-1 to GAPDH mRNA levels was determined, since ET-1 protein is below de-
tection levels due to the small number of cells and since ET-1 mRNA almost always parallels ET-1 protein levels, ET-1 mRNA content was taken as an index of ET-1 ETα-R signaling.

3.3 THE ROLE OF ENDOTHELIN SYSTEM IN RENAL STRUCTURE AND FUNCTION DURING THE POST-NATAL DEVELOPMENT OF THE RAT KIDNEY

M. F. Albertoni Borghese1, M. C. Ortíz2, S. Balan2, A. Lavagna1, A. Filipuzzi1, M. Baruch1, A. Schneider1, R. Moreira Szokalo1, and M. Majowicz1

1Azienda Ospedaliera Papa Giovanni XXIII, Piazza OMS, 1, Bergamo, Italy.

2Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Piazza OMS, 1, Bergamo, Italy.

3Endothelial dysfunction and vascular rarefaction play an important role in the pro-
gression of renal fibrosis. Treatment of Munich Wiسترor Frontier (MWF) rats with ad-
vanced nephropathy with an angiotensin converting enzyme inhibitor showed regres-
sion of established renal lesions and substantial glomerular tuft repair. Here we in-
vestigated whether this effect was associated with protection of the kidney vascular-
ure. The whole kidney vasculature was analyzed by micro-computed tomography (microCT) in untreated and lisinopril- or losartan-treated MWF rats and in Wistar rats as controls. Drugs were given at 50 week-old animals with established renal damage for 10 weeks. The 3D reconstruction of the vascular network showed a progressive rarefacing affecting intermediate and small size vessels in kidneys from aged MWF rats as compared to controls. These changes were associated with endothelial mesen-
chymal transition (EndMT) and apoptotic concomitant with the overexpression of pro-
fibrotic genes including endothelin-1 (ET-1). Within the glomerulus, ET-1 pro-
tein was highly expressed by both endothelial cells (EC) and podocytes as docu-
mented by co-staining of RECA-1 and a-sclerin-4. Renal ET,RE expression in the vas-
cular endothelium of MWF rats was also increased in a time-dependent manner. Renin angiotensin system (RAS) inhibition halted vascular rarefaction and even increased the volume density of kidney vessels as compared to pre-treatment suggesting a regenerative process. The treatment normalized ET-1/ETα-R renal endothelial ex-
pression and significantly reduced EndMT and apoptosis while increased EC prolifer-
ation. Our data suggest that ET-1/ETα-R deregulation contribute to renal EC damage and vascular rarefaction and that restoration of total kidney vasculature by RAS inhi-
bition relates in part to abrogation of ET-1/ETα-R signaling pathway.
and salt + ETA (atrasentan) and ETB antagonist (oral A-192621 10mg/kg/day).

1ET-1 regulates BP by vasoconstriction via ETA receptors and natriuresis via ETB loss of diurnal variation in arterial blood pressure (BP), and hypertension. Endothelin-

number of glomeruli/mm2 decreased in the juxtamedullary (JM) area in ERAm and

creased in ERAm vs Cm (Cm: 101499 ± 3526; ERAm: 84734 ±2709*; Cf:

was used to perform morphometric analysis with Image Pro Plus software. Results are

were divided in 4 groups: control males (Cm), control females (Cf), ERA males (ERAm) and ERA females (ERAf). At day 21, one kidney was used to assess the glomerular number by a maceration method, and the other was used to perform morphometric analysis with Image Pro Plus software. Results are mean ± SEM (n ≥ 6). Two-way ANOVA was used for the statistical analysis. The body weight of ERAm and ERAf decreased when compared with Cm and Cf re-

respectively. However, neither femur length nor kidney weight/100g bw showed differences between the groups. The number of total glomeruli/mm2 decreased in the juxtamedullary (JM) area in ERAm and ERAf vs Cm and Cf respectively (Cm: 129.0±8.8; ERAm: 102.0±6.8**; CF: 134.0±12.0; ERAf: 11.2±0.9##). The JM renal filtration surface area (µm2) decreased in both ETB def and TG rats on HSD, however TUDCA failed to attenuate this increase in either group. Apoptosis was increased in the renal cortex of ETB def rats on HSD (NSD vs. HSD; 4.0±1.0 pg/day; p < 0.001). Renal cortical tissue KIM-1 levels mirrored the urinary KIM-1 excretion in ETB def rats (KIM-1: 10.69±3.43 pg/day; p < 0.001), while HSD did not elicit any change in any TG rats. TUDCA significantly increased renal injury markers (KIM-1: 55.7±13.8 pg/day; NGAL: 1141.8±180 pg/day, albumin: 2.27±1.54 pg/day, p < 0.015) in ETB def rats. Renal cortical tissue KIM-1 levels mirrored the urinary KIM-1 excretion in ETB def rats (KIM-1: 10.69±3.43 pg/day vs. HSD 77.5±8.8 pg/day vs. TUDCA 25.4±7.6 pg/day; p < 0.001). Renal glomerular injury assessed by nephron excretion significantly increased in both ETB def and TG rats on HSD, however TUDCA failed to attenuate this increase in either group. Apoptosis was increased in the renal cortex of ETB def rats on HSD (NSD vs. HSD: 4.0±1.0 pg/day vs. 18.8±4.2 TUNEL+ cells/field), while TUDCA decreased the high salt-induced apoptosis (2.1±0.1 TUNEL+ cells/field). No significant apoptosis was detected in the renal cortex in TG rats. Neither diet nor TUDCA changed renal medullary apoptosis in ETB def rats suggesting that medull-

dural and cortical apoptosis may be mediated via distinct pathways. In conclusion, loss of functional ETB receptors leads to exaggerated renal cell apoptosis in high salt and renal injury. These findings indicate a high salt-induced renoprotective role for ETB re-

ceptor activation that may be blood pressure-independent. Supported by NIH T32 DK007545 to CDM and P01 HL59499 to DMP and JSP.

3.6 MEDULLARY HISTONE DEACETYLASE ENZYMES ARE CRITICAL FOR WATER BALANCE DURING HIGH SALT FEEDING

Kelly Hyndman1, Joshua Speed1, Chunhua Jiri1, David M. Pollock2, and Jennifer S. Pollock1

Med./Nephrology, Univ. of Alabama at Birmingham, 1720 2nd Ave. S, Kaul 830, Birmingham, AL, 35294.

Histone deacetylases (HDAC) play a pivotal role in modifying histones and nonhistone proteins, thereby regulating transcription and protein function. We deter-

mined that a high salt diet increases expression of HDAC1 in the rat renal medulla. Moreover, overexpression of HDAC1 in collecting duct cells increases nitric oxide synthase-1, and decreases vasopressin V2 receptor expression. Thus, we hypothesized that HDAC1 functions as a pro-natriuretic/diuretic factor during high salt feeding. To test this hypothesis, male uninephrectomized Sprague Dawley rats were implanted with an iPrecio perfusion pump to facilitate interstitial infusion into the medulla of the remaining kidney. Pumps infused vehicle (33% DMSO in saline, N = 5) or the HDAC1 inhibitor, MS275 (1 mg/kg/day, N = 10). Rats were given 4% NaCl diet for 7 days. Food and water intake were similar between controls and MS275 infused rats. However, urinary osmolality was significantly increased in MS275 infused rats (1441.8± 86 vs 1001 ± 64 mOsm/kg H2O). MS275 infusion led to a significant 19.2 ± 4.0 g increase in body mass compared to controls (3.4 ± 1.4 g). Sodium excretion was similar between the groups. Urinary nitr/nitrate excretion was significantly increased in MS275 infused rats (3.4± 0.6 vs 5.0 ± 1.7 pg/day, P < 0.05). These data suggest that inhibition of Class I HDACs are critical for medullary natriuretic production and regulation of water homeostasis.

3.7 RENAL ENDOTHELIN AND PULINERGIC SYSTEMS CONTRIBUTE TO SEXUAL DIMORPHISM IN SODIUM EXCRETION

Emran Y. Gohar1, and David M. Pollock2

1Med./Nephrology, Univ. of Alabama at Birmingham, 1720 2nd Ave. S, Kaul 830, Birmingham, AL, 35294.
3.8 ENDOThELIN RECEPTOR ANTAGONIST PROTECTS AGAINST ISCHEMIA/REPERFUSION-INDUCED ACUTE KIDNEY INJURY IN MALE BUT NOT IN FEMALE RATS

Ryszard Tanaka1, Mamoru Ohkita1, and Yasuo Matsumura1

1Lab. of Pathological & Molecular Pharmacology, Osaka Univ. of Pharmaceutical Sci., 4-20-1 Nakanoshita, Talashiki, 569-1054, Japan.

Endothelin (ET)-1/ETA receptor system has been shown to play an important role in the pathogenesis of ischemia/reperfusion-induced acute kidney injury (AKI) and we have reported that ABT-627, a selective ETA receptor antagonist, markedly attenuated AKI in male rats. On the other hand, sex differences in AKI have been established in humans and experimental animals, and there are consistent findings that females are more resistant to the renal injury than males. Müller et al. have shown that the expression of prepro-ET mRNA in kidneys subjected to ischemia was significantly higher in males and the administration of ETA receptor antagonist abolished the differences in survival between sexes (Kidney Int 2002; 62: 1364-1371). However, this area has not been extensively studied, and further studies are needed to confirm the role of ET-1/ETA receptor system in the sex differences of AKI. In the present study, we examined the protective effects of ABT-627 on AKI, using male and female Sprague-Dawley rats. AKI was achieved by clamping the left renal artery and vein for 45 minutes followed by reperfusion, 2 weeks after contralateral nephrectomy. Although renal function in both male and female vehicle-treated AKI rats significantly decreased 1 day after reperfusion, their renal dysfunction were more severe in male than in female rats. In comparison to female rats, males exhibited much more severe renal injury, characterized by proteinaceous casts in tubuli and tubular necrosis. Since female rats have very mild injury in the above experimental condition, it may not be possible to show the protective effect of ABT-627. Therefore, female rats were subjected to a longer ischemic period (60-minute ischemia) to make severe injury, which is comparable to 45-minute ischemia-induced kidney injury in males. Intravenous bolus injection of ABT-627 (1 mg/kg) 5 minutes before ischemia markedly attenuated AKI in males, but not in females. Furthermore, the sex difference in AKI was abolished by ovariectomy and ABT-627 administration attenuated AKI in ovariectomized female rats. These findings suggest that ET-1/ETA receptor system is contributive to the sex difference in the pathogenesis of AKI.

3.9 EFFECTS OF COMBINED ENDOThELIN A RECEPTOR AND RENIN-ANGIOTENsIN SYSTEM BLOCKADE ON THE REGRESSION OF CHRONIC KIDNEY DISEASE IN 5/6-PHRECTOMIZED REN-2 TRANSGENIC RATS

Vera Cvetković Chabova1, Lenka Sedlaková2, Zuzana Husková2, Libor Kopčák2, Petra Skaračková1, Tarja Dolenšek1, Lenka Cervenková2, Zdenka Vančurová2, Lukáš Cervenka3, and Ivan Vaneckovič3

1Div. of Nephrology, Dept. of Med., Univ. of Alabama at Birmingham, 834 Kaul, 720 20th St. S., Birmingham, AL, 35233. Renal endothelin (ET-1) and purinergic systems are important regulators of Na homeostasis and may account for sex differences in cardiovascular and renal function. A link between these two systems has recently been demonstrated in vitro, however, the in vivo interaction is not clear. Therefore, we tested the hypotheses that (1) Na loading has sexually dimorphic effects on renal ET-1 production/release, and (2) purinergic signaling is involved in the renal ET-1 dependent response to Na load. Our results showed that female Sprague-Dawley rats on a normal Na diet had a 2.5-fold higher ET-1 than males (14±2.0 vs. 5.6±1.0 pM/g/day/kg, p<0.05). Urinary ET-1 increased 2-fold in males with increasing dietary Na (11.2±0.8 vs. 5.6±1.0 pM/g/day/kg, p<0.05), but remained unchanged in females, although diuresis and natriuresis were more robust in females compared with males. Furthermore, in males only, renal intramedullary infusion of suramin (purinergic (P2) receptor blocker) significantly blunted the increase in Na excretion and inner medullary ET-1 gene expression induced by intramedullary Na loading. In contrast, ET-1 gene expression in females did not change with intramedullary Na in the presence or absence of suramin. These data indicate that an activation of inner medullary purinergic (P2) and ET-1 signaling systems could play a more important role in the natriuretic response to Na loading in male compared to female rats. These studies were funded by NIH grants P01 HL09999 and P01 HL95499.

3.10 THE ENDOThELIN SYSTEM MEDIATES RENAL ENDOPLASMIC RETICULUM STRESS DEVELOPMENT

Carmen De Maguel1, William C. Hannick2, Janet L. Hobbs1, Masashi Yamauchi2,3, David M. Pollock1, and Jennifer S. Pollock1

1Physiology, Univ. of Alabama at Birmingham, 720 20th St. S., Kaul 840, Birmingham, AL, 35233, 2Molecular Genetics, Univ. of Texas Southwestern Med. Ctr., 5323 Harry Hines Blvd., Dallas, TX, 75390, 3Inst. for Integrative Sleep Med., Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Endothelin-(ET-1) promotes renal damage during cardiovascular disease; yet, the exact molecular mechanisms involved remain undetermined. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and renal injury. These studies aimed to determine the role of ET-1 in renal ER stress development. Vascular endothelial cell ET-1 knockout (VEET KO) and flox control mice were used to study the role of ET-1 in renal vascular ER stress development in response to the ER stressor, tunicamycin (TM, 5µg). ER stress marker expression and renal apoptosis were determined by qRT-PCR and TUNEL assay, respectively. In flox mice, TM significantly increased relative ER stress marker expression in renal vessels (saline vs. TM, n=6-9/group, p<0.05; GRP4: 1.0±0.3 vs. 16.5±6.6, ATF-6: 1.0±0.5 vs. 6.8±3.5, and CHOP: 1.4±0.4 vs. 12.5±1.9) and led to increased outer medullary, non-vascular apoptosis (saline vs. TM, n=5-6/group, p<0.05; 04.1±0.1 vs. 5.9±1.8 TUNEL cells/field). Interestingly, TM failed to increase renal vascular ER stress or renal apoptosis in VEET KO mice. The role of ET-1 receptors in renal ER stress was assessed using ET receptors deficient (ETa, ETb or transgenic control (TG) rats. TM similarly increased cortical ET stress in both rat genotypes. However, in the outer medulla, TM led to a 13 to 22 fold increase from baseline only in saline for sXBP-1, GRP78 and CHOP (n=7-8/group). Pre-treatment of TG control rats with ABT-627 (ETa, antagonist; 5mg/kg/day) for 1 week prior to TM injection significantly reduced the ER stress response in TM in cortex (7 to 10 fold decrease for GRP78, XBP-1, CHOP and caspase-12; n=3-4/group) and medulla (7 to 25 fold decrease for GRP78, ATF-4, spliced XBP-1, CHOP and ATF-6; n=3-4/group), also inhibiting renal apoptosis. ABT-627 pre-treatment failed to reduce renal ER stress development and apoptosis in s/s rats, indicating that a functional ETa receptor is key for the anti-ER stress and anti-apoptosis actions of ABT-627. In conclusion, endothelium-derived ET-1 is critical for development of TM-induced renal ER stress and apoptosis. ETa receptor activation inhibits renal ER stress genes and apoptosis, while ETb receptor activation has renoprotective effects. These results highlight the possibility of targeting the ET-1 system as a therapeutic approach for ETa stress-induced kidney damage. Funded by NIH T32 DK007545 to CDM and P01 HL95499 and P01 HL96999 to DMP and JSP.

3.11 DATA-LISTED ENDOThELIN RECEPTOR TYPE B (ETb) DEFICIENCY RESULTS IN GREATER BLOOD PRESSURE LEVELS DURING PREGNANCY AND IN RESPONSE TO PLACENTAL ISCHEMIA-INDUCED HYPERTENSION IN RATS

Frank Spradley1

1Medical Science, Univ. of Alabama at Birmingham, 720 20th St. S., Kaul 840, Birmingham, AL, 35233.

Preeclampsia (PE) is a pregnancy-specific disorder of new-onset hypertension during pregnancy that threatens the lives of both mother and fetus. The mechanisms medi- ating this hypertension are unclear, but studies have shown that it most likely origin- nates from placental ischemia. Indeed, placental ischemia/hypoxia induced by reduced uterine perfusion pressure (RUPP) in experimental animals stimulates the release of soluble factors into the maternal circulation where they cause vascular dys- function and hypertension. Importantly, blockade of the vasocostrictive endothelin type A receptor (ETa) abolishes RUPP-induced hypertension implicating this re- ceptor in PE. Although it has been reported that RUPP reduces ETa-mediated blunting of ET-1-induced vasoconstriction and ETb expression in small mesenteric arteries, direct evidence implicating ETb in blood pressure regulation during pregnancy or in response to placental ischemia is scarce. Thusly, we tested the hypothesis that dual RAS blockade (trandolapril and losartan); 5/6 NX TGR with combined treatment with RAS and ETa receptor blockade (atsazoten); 5/6 NX was done at the age of 6 weeks and the treatments were initiated 6 weeks after 5/6 NX. Alburnamia was determined at weeks 6, 8, 12, 16, 20, 30. In other groups, concentrations of ANG II and ET-1 were evaluated in the kidneys after 2 weeks of treatments. Results: Mor- tality of untreated 5/6 NX TGR was 100% at 17th week compared to sham-operated rats with mortality 0% at 30th week. Mortality of 5/6 NX TGR with RAS blockade was 32% and in group with RAS and ETa receptor blockade 37% at the end of 30th week. In 5/6 NX TGR, both treatments reduced enhanced alburnamia, plasma and kidney ANG II and cortical ET-1 concentrations similarly. Conclusion: There is no additive effect of combined ETa and receptor blockade on the regression of CKD in 5/6 NX TGR most likely due to efficient reduction of ET-1 in the renal cortex by the dual RAS inhibition.

3.10 THE ENDOThELIN SYSTEM MEDIATES RENAL ENDOPLASMIC RETICULUM STRESS DEVELOPMENT
ETα deficiency would result in increased blood pressure levels during pregnancy and even greater levels in response to placental ischemia. At eighteen weeks old, ETβ deficient (def) and transgenic control (Tg) timed-pregnant rats were generated. Rats were maintained either in the normal pregnant (NP) group or RUPP surgery operated. At gestational day 14 with assessment of mean arterial blood pressure (MAP, carotid catheter) and pregnancy weights at day 19. This resulted in 4 groups: NP Tg (N=5); RUPP Tg (N=4); NP ETβ def (N=4); and RUPP ETβ def (N=4). MAP was greater in NP ETβ def/tan than NP Tg (117±9 vs. 75±1, P<0.05). MAP levels were increased by RUPP in Tg (100±2, P<0.05) and to even greater levels in ETβ def (146±6, P<0.05). Fetal weights were similar between NP ETβ def and Tg (1.99±0.09 vs. 2.05±0.06) but were reduced significantly in RUPP ETβ def (1.53±0.13, P<0.05) vs. Tg (1.68±0.15). Placental weights were similar in NP ETβ def and Tg (0.53±0.02 vs. 0.54±0.02), and RUPP reduced these weights only in Tg (0.47±0.06). Placental Insulin-like growth factor (IGF-1) data-fitted to ~A=0.03, P<0.05 not ETβ def (0.56±0.01). Placental sufficiency (fetal weight divided by placental weight, a marker of placental function) was similar in both NP groups (3.79±0.26 vs. 3.86±0.19) whereas RUPP reduced this insulin ETβ def (2.62±0.21, P<0.05) but not Tg (4.08±0.65). In conclusion, these data indicate that the ETβ receptor is important for blood pressure regulation during pregnancy and blunts the hypertension and placental dysfunction found in PE. Funding: T32HL103524-01.

3.12 CIRCADIAN REGULATION OF RENAL ENDOTHELIN-1
Jermaine Johnston1, Joshua Speed1, Chunhua Jin1, Jermaine W. Smith1, Joshua Speed1, and David M. Pollock1
1Med/Nephrolog, Univ. of Alabama at Birmingham, 1720 2nd Ave. S., Karl 834, Birmingham, AL, 35294.

Rats lacking endothelin type B receptor function (ETB def) have an exacerbated circadian blood pressure rhythm. Endothelin-1 (ET-1) promotes renal excretion of Na+ and our lab has recently shown that endothelin-1 (ET-1) facilitates the storage and clearance of Na+ by the skin interstitium, providing a buffer for Na+ when salt intake is elevated. The goal of the current study is to determine if ETB def impairs the ability of the skin to store Na+, and if this impairment plays a role in the circadian blood pressure rhythm in ETB def rats. Transgenic control (Tg con) or ETB def rats were maintained on normal (0.8% NaCl) or high salt diet (4% NaCl) and urine was collected in 12-hour intervals (active and inactive periods). In a separate group of animals, rats were euthanized at 4-hour intervals beginning at zeitgeber time 0 (lights on), and skin was taken for the measurement of Na+ and water content. In Tg con rats, urinary excretion of ET-1, an indication of renal production, was significantly higher during the active period vs. inactive period in rats on NS (3.6±1.1 vs. 0.8±0.2 pg/12hr respectively), an effect that was more pronounced in HS fed rats (9.2±1.1 vs. 6.0±0.3 pg/12hr respectively). There was no difference in active vs. inactive period ET-1 excretion in ETB def rats on NS (6.6±2.2 vs. 4.6±1.7 pg/12hr respectively) suggesting an altered circadian pattern of renal ET-1 production. Interestingly, the pattern was restored in ETB def rats fed HS (2.2±1.0 vs. 9.2±2.5 pg/12hr inactive vs. active). In addition, rats fed HS had an increase in skin Na+ compared to NS fed rats; however, there was no difference between genotypes. These data suggest that ETB con of blood pressure rhythms occurs mainly through activation of renal ETB receptors to promote Na+ excretion, and not through a reduction in the ability of skin to buffer Na+.

This research was supported by NIH grants P01 HL59499, P01 HL69999, and T32DK007545.

3.13 ETα RECEPTOR BLOCKADE IMPROVES THE DIFFERENTIAL NADRIURETIC RESPONSE TO AN ACUTE SALT LOAD IN MALE AND FEMALE ETα DEFICIENT RATS
Jermaine Johnston1, Joshua Speed1, Chunhua Jin1, and David M. Pollock1
1Med/Nephrolog, Univ. of Alabama at Birmingham, 1720 2nd Ave. S., Karl 834, 200 20th St. S., Birmingham, AL, 35233.

We have previously shown that rats lacking ETα receptors in non-neuronal tissues (ETα def) have an impaired ability to handle an acute sodium load that is time-of-day dependent. Subsequent studies suggested that the attenuated natriuretic response was not only causes salt-dependent hypertension, but also results in elevated plasma ET-1 levels during the first 12 hrs of the inactive period as well, although this improvement was not statistically significant (474±34 treated, n=4; 183±44±μg Na/12hr untreated, n=4, NS). MAP was unchanged in response to salt loading although ETB-627 significantly reduced MAP throughout the entire treatment period in both male and female rats (P<0.05). These results show that ETα receptor activation contributes to the impaired natriuretic response to salt loading in both male and female rats but does not diminish the time-related sex difference in sodium handling. This research was supported in part by NIH grants: P01 HL59499, P01 HL69999, and T32DK007545.

3.14 ENDOTHELIN-1 INCREASES GLOMERULAR PERMEABILITY IN SICKLE CELL MICE
Malgorzata Kazan1, Chiao-Wang Sun2, Tim M. Townes2, and David M. Pollock

Sickle cell disease (SCD) extensively alters renal structure and function, leading to nephropathy manifested by increased permeability of filtration barrier and albuminuria/proteinuria. The endothelin-derived peptide, endothelin-1 (ET-1), with its powerful vasoconstrictor and pro-inflammatory effects may contribute to the development of sickle cell glomerulopathy. Therefore, the aim of the study was to determine whether ET-1 contributes to increased glomerular permeability to albumin in SCD and if ET-1 receptors blockade ameliorates glomerular damage. Furthermore, because our preliminary studies showed sex differences in the vasoconstrictor response to ET-1 in sickle cell mice the study was designed to determine if sex differences exist in this response. Experiments utilized 12 week old humanized sickle cell mice (HSβS) and genetic controls (HBAA) recently developed by the Townes’ lab. Ambrisentan (ETα antagonist), A-182086 (ETαB antagonist) or vehicle was administered via drinking water and the concentration adjusted daily according to the intake (10mg/kg/day) for 2 weeks. Glomeruli were isolated for direct permeability measurements as a volume response of glomerular capillaries to an oncotic medium generated by defined concentrations of albumin. Urinary protein excretion was determined using Bradford colorimetric method. Urinary albumin excretion was measured using enzyme immunoassay kit (GenWay). Glomerular permeability to albumin (Pα) was significantly higher in glomeruli from sickle mice (both in males and females) than control mice (0.50±0.07 and 0.47±0.06 vs. 0.13±0.02 and 0.10±0.2, respectively). Ambrisentan treatment significantly reduced the elevated Pα in glomeruli from male (0.24±0.05 vs. 0.50±0.07) and female (0.20±0.03 vs. 0.47±0.06) HSβS mice. ETαB receptors antagonism with A-182086 also significantly decreased the Pα in glomeruli from male (0.28±0.06 vs. 0.50±0.07) and female (0.24±0.03 vs. 0.47±0.06) HSβS mice. However, there was no effect on albumin or protein excretion after the treatment with both antagonists in wild type male and female mice. Thus, antagonists did not alter Pα in HBAA mice. These data support the hypothesis that ETα may play an important role in the development of sickle cell nephropathy and support the use of chronic ETα antagonism as a prospective treatment for sickle cell nephropathy. This work was supported by the program project grant on The Role of Endothelin-1 in Sickle Cell Disease (U01 HL117684) and UAB- US CDC O'Brien Center (grant DK070337).

3.15 SELECTIVE ENDOTHELIN-A RECEPTOR ANTAGONIST PREVENTS THE PROGRESSION OF ACUTE KIDNEY INJURY TO CHRONIC KIDNEY DISEASE
Rebecca Morhouse1, Alicia Czepiel1, Lenay Goodwyn1, Oliva Leoni1, Pierre-Louis Tharaux2, David Webb1, David Kluth3, and Neeraj Dhaun1
1Cardiovascular Research Institute Mérieux, 28 FVB mice underwent prolonged (50min) unilateral...
prevented both of these. At 28d after IRI kidney weight was reduced (-55%) and associated with significant macrophage infiltration and fibrosis compared to the contralateral control kidney. Mice treated with sitoxetan had normal kidney weight, reduced macrophage infiltration and less fibrosis vs. IRI kidney with sitoxetan: F4/80 stained high power field: 2.5 ± 0.2 x 0.8%, picrosirius red stained high power field: 8.6 ± 0.48 vs. 3.1%. For both macrophage infiltration and fibrosis, p<0.05 for IRI vs. control and for IRI vs. IRI with sitoxetan, p<ns for control vs. IRI with sitoxetan. Furthermore, an increase of both the ET1(28-fold) and ET4(2-fold) receptors as well as pro-pre-ET(1-10(10) fold) mRNA was seen in both the cortex and medulla of the IRI kidney relative to control. Angiotensinogen and renin mRNA was unchanged. With sitoxetan treatment ET4/ET5 receptor and pro-pre-ET-1 mRNA remained similar to baseline levels. Finally, renal ET1 production increased following IRI and this was prevented by ET4 receptor antagonism (fractional excretion of ET1- IRI vs. IRI with sitoxetan: 47 ± 16%, p<0.05). Conclusions: In an in vivo model of AKI progressing to CKD, ET1 receptors antagonism reduced BP and vascular dysfunction and prevented progression of renal injury and ET system activation after AKI. Therefore, selective ET4 receptor antagonism offers a potentially novel therapy for AKI. Translational studies are now warranted. Funded by a British Heart Foundation PhD studentship (FS17/7829328).

3.16 THE ROLE OF A RENAL ALDOSTERONE-ENDOTHELIN FEEDBACK SYSTEM IN TOTAL NA BALANCE AND MINERALOCORTICOID ESCAPE

Charlies Wimpee1, 2, 3, Jeanette Lynch1, 2, Amanda Welsh1, 2, Michelle Garne1, 2, Brian Charonis1, 2, Donald Kohan1, 3

Aldosterone increases blood pressure (BP) by stimulating sodium (Na) reabsorption in the collecting duct (CD) and, by negative feedback, stimulates CD endothelin (ET1 - ET1) that acts to inhibit Na and water reabsorption. We have previously provided evidence for a renal aldosterone-endothelin feedback system. We test the hypothesis that this system is necessary for proper Na balance and BP control by comparing the effect of a high NaCl diet (2% gelled diet with saline to drink) and mineralocorticoid stimulation on wild-type mice (WT) and CD ET-1 KO mice. WT mice consumed more high NaCl diet and saline and had greater urine output than CD ET-1 KO mice consuming normal NaCl diet and saline and had greater urine output than WT. WT mice did not increase fluid intake or retention, body weight (BW), or systolic BP during DOCP treatment. In contrast, the CD ET-1 KO mice increased fluid retention, BW, and systolic BP on the high NaCl diet alone. DOCP further increased systolic BP in the CD ET-1 KO, which exhibited greater Na and water retention and BW gain than WT. Unlike WT, CD ET-1 KO mice failed to return to neutral Na balance during 19 days of DOCP administration (mineralocorticoid escape). Thus, the absence of CD ET-1 expression impairs renal response to Na loading which results in abnormal fluid and electrolyte handling that is characterized by a reduced fractional Na reabsorption rate with a high NaCl diet and DOCP treatment. We conclude that CD expressed ET-1 functions as an essential element necessary for mineralocorticoid escape. This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant R01-DK-82680 to BDC & CSW. NHLBI grant PO1 H59459 to DEK, NHF postdoctoral fellowship 2132HL0810 to AKW, and by funds from the Department of Veteran Affairs to CSW.

3.17 HIGH SALT INTAKE INCREASES ET-1 MEDIATED NATRIURETIC EFFECTS ON TOTAL NA EXCRETION

Chunhua Jin1, Amanda Welsh1, 2, Michelle Garne1, 2, Brian Charonis1, 2, Donald Kohan1, 3

Increased fluid and electrolyte handling when challenged with a high NaCl diet (2% gelled diet with saline to drink) and mineralocorticoid stimulation on wild-type mice (WT) and CD ET-1 KO mice failed to return to neutral Na balance during 19 days of DOCP administration (mineralocorticoid escape). This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant R01-DK-82680 to BDC & CSW. NHLBI grant PO1 H59459 to DEK, NHF postdoctoral fellowship 2132HL0810 to AKW, and by funds from the Department of Veteran Affairs to CSW.
development of SCD in mice lacking endothelial ET-1 production (HbSS-VEETKOBMT) and mice with endothelial ET-1 production (HbSS-flox/−). Full induction of the sickle hemoglobin phenotype requires approximately 12 weeks. The HbSS-VEETKOBMT group showed a significant survival advantage over the HbSS-flox/− group (p<0.026) with all HbSS-VEETKOBMT mice surviving and only 58% of HbSS-flox/− mice surviving at 18 weeks post-BMT. Dysfunctional urine-concentrating ability exists in SCD patients and mice, most likely, secondary to progressive renal injury. To determine whether endothelial-derived ET-1 participates in the SCD mediated loss of urine-concentrating ability, osmolality was measured in both spot urines and 24-hour metabolic cage urine collections. At five weeks post-BMT, prior to the onset of the SCD phenotype, there was no difference in spot urine osmolality between HbSS-flox/− and HbSS-VEETKOBMT mice (324±4 vs. 309±3 mOsm/kg, p=0.05). Following the onset of the SCD phenotype, osmolality in the HbSS-flox/− group left only a single mouse for the assessment 24-hour urine osmolality, and this mouse showed a low urine osmolality (930±0 mOsm/kg). However, when compared to HbSS mice, HbSS-VEETKOBMT mice demonstrated preserved urine-concentrating ability as indicated by significantly higher 24-hour urine osmolality (854±11 vs. 2512±361 mOsm/kg, p<0.006). These data indicate that endothelial-derived ET-1 is a major mediator of SCD pathophysiology and that lack of endothelial ET-1 production is sufficient to prevent renal dysfunction and mortality in SCD mice. This work was supported by U01 HL117684 to DMP and JSP and T32HL07918 to BMF.

3.20 IDENTIFICATION OF EDN1-AS: A NOVEL LONG, NON-CODING RNA IN THE REGULATION OF ENDOTHELIN-1
Kristen Solocinski1,2, Sarah Bankovic1, Amanda Welch1, Charles Wingo1,3, Brian Carr1 and Michelle Gunz1,2

Long, non-coding (Inc)RNAs regulate gene expression via diverse mechanisms and can either activate or silence genes. Endothelin-1 (ET-1) is a peptide hormone that contributes to blood pressure regulation in a tissue-specific manner. We have identified a novel IncRNA transcribed from the human ET-1 gene (EDN1) locus. This antisense IncRNA, designated EDN1-AS, was first identified in human branched epithelial (SH) cells. We have also detected expression of EDN1-AS in human umbilical vein endothelial (HUVEC) cells, human mammary epithelial (HMEC) cells, and whole human kidney. These samples were derived from males and females, thus, EDN1-AS appears to be expressed in both sexes. The EDN1-AS IncRNA was also shown to oscillate over the course of 24 hours in synchronized human renal proximal tubule cells (HK2), suggesting that its expression may be regulated by the circadian clock mechanism. The clock is made up of four core proteins: Bmal1, CLOCK, Cry (homologs 1 and 2), and Per (homologs 1-3). Interestingly, Per inhibits ET-1 expression in the kidney and Per was detected at the EDN1-AS promoter in HK2 cells. Furthermore, we have recently identified a murine homolog of EDN1-AS. Preliminary data indicate that expression of mEDN1-AS is higher in murine kidney compared to the cortex. Together, these data demonstrate the identification of a novel ET-1-related IncRNA expressed in mice and humans, detectable in several cell types in both sexes, and may represent a previously unknown mechanism for regulation of ET-1 expression. Funding: This work was supported by NIH DK085193 and DK098460, and the ASN Foundation for Kidney Research to MLG, 2T2DHL083810 to KS, 2T2DHL03810 to AKW, and NIH DK062080 to BRCV and CSW.

3.21 ET-RECEPTOR ACTIVATION CONtributes TO T CELL INFILTRATION FOLLOWING RENAL ISCHEMIA-REPERFUSION INJURY
Erika Boesen1
1Cellular & Integrative Physiology, Univ. of Nebraska Med. Ctr., 98580 Nebraska Med. Ctr., DRC1-5005, Omaha, NE, 68198-5880.

Endothelin-1 (ET-1) and the ET receptor undergo rapid and sustained upregulation in the kidney following ischemia and reperfusion (IR) injury, but data on the long-term consequences of this on renal function are limited. Renal IR injury increases the risk of hypertension, and while both the endothelin and immune systems have been implicated in hypertension, the contribution of the endothelin system to the inflammatory response following renal IR injury is poorly understood. The current study tested whether ET receptor activation modulates adhesion molecule and chemotactic protein expression, and subsequent T cell infiltration following renal IR injury. Male C57BL/6 mice were treated with the selective ET receptor antagonist ABT-627 (10 mg/kg/d p.o.) or vehicle (drinking water), from 2 days prior to 45 min unilateral renal IR. Treatment continued during recovery and mice were sacrificed at 24 h or 10 days post-IR (n=5-6 per group). The concentration of monocytic chemotactant protein (MCP-1) was significantly increased in the renal cortex of the ischemic versus contralateral kidney at 24 h post-IR (10-12 fold; p<0.0001), but there was no significant difference between vehicle and ABT-627-treated mice. A similar increase was seen in the ischemic outer medulla, with no difference between vehicle and ABT-627-treated mice. The protein expression of the adhesion molecule E-Selectin was significantly increased in the cortex of the ischemic kidney in both groups at 24 h (p<0.01), but this was not significantly affected by ABT-627. At 10 days post-IR, CD3+ T cell numbers were dramatically increased in the ischemic versus contralateral cortex and outer medulla of both groups (p<0.01). ET1 receptor blockade significantly blunted the rise in T cell numbers in the outer medulla (P<0.05). In ABT-627-treated mice, CD4+ and CD8+ T cells were not detected in the cortex at 10 days post-IR. These data suggest that ET-1 acting via the ET receptor contributes to T cell infiltration of the outer medulla post-IR injury. This may have important implications for long-term blood pressure control following acute kidney injury, an area which awaits further investigation. Funding: American Heart Association Scientist Development Grant 11SDG8960028.

3.22 EVALUATION OF ENDOTHELIN A RECEPTOR (ETA) BLOCKADE ON THE PROGRESSION OF RENAL INJURY IN VARIOUS MODELS OF METABOLIC DISORDERS WITH PRE-EXISTING RENAL DISEASE
Kais McPherson1, Donessa Spire1, Lataya Taylor1, Ashley Szabo-Johnson1, and Jan M. Williams2
1Pharmacology & Toxicology, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216.

The endothelin (ET) system has been shown to play an important role in the development of renal injury via the endothelin A (ETA) receptor. Therefore, the current study examined whether chronic ETA blockade with ABT-627 would prevent the progression of renal injury in various animal models of metabolic disorders with pre-existing renal disease. In our type-1 diabetic model of renal disease the streptozotocin (STZ) treated Dahl salt-sensitive (SS) rat, proteinuria increased to 353±34 mg/day by 20% (139±10 vs. 108±6 mmHg, respectively, n=3-5) and proteinuria was markedly reduced in ABT-627 treated STZ-SS rats versus vehicle treated rats (310±32 vs. 517±68 mg/day, respectively, n=8). The degree of glomerular injury and renal interstitial fibrosis was significantly reduced in the kidneys of ABT-627 treated STZ-SS rats compared to vehicle STZ-SS rats. Next, we determined whether treatment with ABT-627 for 6 weeks would be beneficial in a type-2 diabetic model (T2DN rat) with pre-existing renal injury. While chronic ETA blockade did not have an effect on arterial pressure or proteinuria in T2DN rats, ABT-627 prevented the rise in plasma creatinine (Pcr) levels (1.4±0.2 vs. 0.9±0.1 mg/dL, respectively, n=6). Since the contribution of ET during the progression of renal disease associated with non-diabetic obesity has not been thoroughly investigated, we examined whether ETA blockade would be beneficial in preventing the progression of renal injury associated with obesity in the obese leptin receptor mutant Dahl salt-sensitive (SS) mutant strain derived from Zinc-finger nucleases. After 9 weeks of treatment, MAP was reduced by 20% (215±10 vs. 173±6 mmHg, respectively, n=5) and proteinuria was markedly reduced in ABT-627 treated STZ-SS rats versus vehicle treated rats (310±32 vs. 517±68 mg/day, respectively, n=8). The degree of glomerular injury and renal interstitial fibrosis was significantly reduced in the kidneys of ABT-627 treated STZ-SS rats compared to vehicle STZ-SS rats. Next, we determined whether treatment with ABT-627 for 6 weeks would be beneficial in a type-2 diabetic model (T2DN rat) with pre-existing renal injury. While chronic ETA blockade did not have an effect on arterial pressure or proteinuria in T2DN rats, ABT-627 prevented the rise in plasma creatinine (Pcr) levels (1.4±0.2 vs. 0.9±0.1 mg/dL, respectively, n=6). Since the contribution of ET during the progression of renal disease associated with non-diabetic obesity has not been thoroughly investigated, we examined whether ETA blockade would be beneficial in preventing the progression of renal injury associated with obesity in the obese leptin receptor mutant Dahl salt-sensitive (SS) mutant strain derived from Zinc-finger nucleases. After 9 weeks of treatment, MAP was reduced by 20% (215±10 vs. 173±6 mmHg, respectively, n=5). However, we did not observe any differences in proteinuria between the groups. Similar to T2DN rats, chronic ETA blockade attenuated the increase in Pcr (1.3±0.2 vs. 0.7±0.1 mg/dL). Interestingly, treatment with ABT-627 increased the survival rate of SS*mutant rats (83%, 5 of 6 vs. 50%, 3 of 6). In conclusion, these data indicate that ETA blockade prevents the decline in renal function in animal models suffering from hypertension, diabetes and/or obesity with pre-existing renal disease. This research supported by NIGMS NIH P20GM104357 and AHA 12SDG8960028.
both non-diabetic (ND) and diabetic (D) rats compared to vehicle. A significant reduction in infarct volume was seen with IRL-1620 in both ND (80.8%) and D (69.6%) rats. There were significantly more PECAM-positive vessels/30μm brain slice in the ND and D IRL-1620 rats (9.1±0.5; 9.0±0.4) versus vehicle (5.9±0.4; 7.1±0.4). Immunostaining revealed a significant increase in ETα expression for ND (p<0.0001) and D IRL-1620 rats (p<0.04), compared to vehicle. Co-localization of VEGF- and PECAM-positive endothelial cells was significant higher in D IRL-1620 rats (15.5±1.1%) compared to vehicle (10.2±0.8%). Results indicate that IRL-1620 is effective in cerebral ischemia in rats with T2DM by significantly reducing infarct volume, improving neurological/motor function, and enhancing angiogenesis. This study was supported by Midwestern University.

3.24 THE APOPTOTIC PATHWAY MEDIATES THE NEUROPROTECTIVE EFFECT OF IRL-1620 IN A RAT MODEL OF FOCAL CEREBRAL ISCHEMIA

Anil Gulati,1 Seema Brival1, Annappurna Puppula1, and Lalu Thadh1
1Chicago Coll. of Pharmacy, Midwestern Univ., 555 31st St., Downers Grove, IL, 60515, 2Chicago Coll. of Osteopathic Med., Midwestern Univ., 555 31st St., Downers Grove, IL, 60515.

Previous studies have shown that IRL-1620 enhances neurovascular remodeling following cerebral ischemia. It is possible that IRL-1620 provides protection to neurons by inhibiting the apoptotic pathway. Following middle cerebral artery occlusion (MCAO), rats received 3 injections of vehicle or IRL-1620 (5μg/kg/day) at 2, 4, and 6 hr. Behavioral evaluation confirmed the induction of stroke. Rats were sacrificed and brains processed to evaluate protein expression of apoptotic markers. All procedures were approved by Midwestern University IACUC. Rats treated with IRL-1620 showed significant improvement in neurological and motor function tests compared to vehicle. In addition, there was a significant decrease in infarct volume in IRL-1620 treated rats (24.7±3.73mm3) versus vehicle group (35.23±32.18mm3). Anti-apoptotic protein Bcl-2 expression was decreased and pro-apoptotic protein Bax expression was increased in vehicle-treated compared to sham (p<0.001). IRL-1620 treatment showed significantly (p<0.01) increased expression of Bcl-2 and decreased expression of Bax. There were no changes in total Akt expression in sham, vehicle and IRL-1620 treated rats, however, there was an increase in pAkt in IRL-1620 treated rats compared to vehicle group (P=0.05) post-occlusion. The results demonstrate that IRL-1620 is a neuroprotective agent and attenuates the neuronal damage following cerebral ischemia in rats by preventing apoptosis. Study was supported by Midwestern University.

3.25 NEUROPROTECTIVE EFFECT OF APILIMOD IN ISCHEMIA REPERFUSION INJURY IN RATS

Sanita Tiwari,1 Dinash Tripathi1, and Arun Varna1
1Physiology, King George’s Med. Univ., Lucknow, 226003, India.

Background: Cerebral stroke is a neurodegenerative disease and it is a major cause of death and disability throughout the world. Microvascular reactive oxygen species (ROS) generation and Lipid peroxidation level is increase during ischemia, which is responsible for neuronal death in cerebral stroke. Higher levels of ROS cause state of oxidative stress. Reactive oxygen species damage the DNA and play an important role in apoptosis. Lipid peroxidation is a well-established mechanism of cellular injury in animals, and refers to the oxidative degradation of lipids. So, Lipid peroxidation is an important factor in the physiopathology of ischemia. Purpose: The aim of this study was to investigate the neuroprotective effects of apilimod (IL-12 inhibitor) on middle cerebral artery occlusion model of stroke in rats. Methods: Focal cerebral ischemia was induced in male S.D. rats (250 ± 20g) by occlusion of middle cerebral artery Apilimod was administered prior and post induction of ischemia to assess its therapeutic window. Neurological deficit was determined by Longa’s score. Lipid peroxidation levels were evaluated by malondialdehyde assay and Glutathione (GSH) level was evaluated by 5,5-dithio-bis-2-nitrobenzoic acid (DTNB) which is readily reduced by sulfhydryls forming a yellow substance which is measured spectrophotometrically at 412 nm. Results: Apilimod significantly ameliorated the neurological deficit. The biomarker of oxidative stress malondialdehyde (MDA) was also found to be significantly reduced following apilimod administration and increased level of the antioxidant enzyme glutathione (GSH). Conclusion: These results show that apilimod has a preventive effect against ischemic stroke in animal model. Acknowledgment: We thanks the Defence Research & Development Organisation (DRDO), New Delhi, India for providing a grant (no. ERIP/ER/1103953M/01/1361). References: Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91. Co-lado, M. I., O'Shaughnessy, B., Eruad, D., Mistry, A., Murray, T. K., and Green, A. R. (1997) A study of the neurotoxic effect of MDMA ('ecstasy') on 5-HT neurons in the brains of mothers and neonates following administration of the drug during pregnancy. Br J Pharmacol 121:827-833. Anderson, M. E. (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548-555.

3.26 NEUROPROTECTIVE POTENTIAL OF ENDOTHELIN ETA RECEPTOR ANTAGONIST IN CEREBRAL ISCHEMIA MODELS

Shyam Sharma,1 Taskar Deshpande1, and Anil Gulati1
1Pharmacology & Toxicology, Nat. Inst. of Pharma. Edu. and Res. (NIPER), Sector 67, S.A.S. Nagar (Mohali), 160602, India, 2Dept. of Pharma. Sci., Midwestern Univ., 555 31st St., Downers Grove, IL, 60515.

Stroke is the second most common cause of death and the leading cause of disability, worldwide. The pathophysiology of stroke involves a complex multifactorial cascade. There is increasing evidence of involvement of endothelin in the development and progression of ischemic stroke. Therefore, endothelin is considered as one of the target for the treatment of cerebral ischemia-reperfusion injury. In this study we have investigated the effect of ETα receptor antagonist in two models viz. rat model of focal cerebral ischemia and gerbil model of global cerebral ischemia. Effect of endothelin receptor antagonist was assessed on cerebral blood flow, neurological score, neurological damage and biochemical changes after induction of cerebral ischemia. Middle cerebral artery occlusion (MCAO) resulted in drastic decrease (80%) in ipsilateral cerebral blood flow as measured by Laser Doppler flowmetry. Contralateral blood flow remained unaltered. Significant neurological deficits and damage was observed with MCAO. BMS 182874 showed neuroprotection both in rat and gerbil MCAO models. BMS 182874 treatment significantly reduced ischemic damage in focal cerebral ischemia model. This was associated with reduction in TNF α levels and MPO activity. BMS 182874 treatment (5 mg/kg) in gerbil model significantly decreased the locomotor activity as compared with control group. The response latency in passive avoidance test was also increased. This improvement in neurological parameters was well reflected in histopathology of brain. CA1 region of hippocampus was examined for number of survived neurons. BMS 182874 treatment increased the number of survived cells in CA1 region. Results of this study suggested the potential of pharmacological interventions targeted at endothelin receptors in cerebral ischemia models.

3.27 P66 SHC REGULATES ET-1-MEDIATED INTRACELLULAR CALCIUM HANDLING IN RENAL RESISTANCE ARTERIES AND CONTRIBUTES TO RENAL GLOMERULAR INJURY IN HYPERTENSION

Oleg Palygin1, Bradley Miller2, Andrew Chong2, Alexander Staruschenko,1 and Andrew Sorkin1

The pathogenesis of hypertension-induced nephropathy is associated with increased renal vascular resistance and loss of vascular responsiveness. Even though microvascular injuries are detected in the majority of patients with hypertension, the pathophysiological mechanisms mediating renal microvascular dysfunction remain unknown. Excessive signaling via adaptor protein p66 Shc is likely to be one of the mechanisms of oxidative stress-related pathologies and the purpose of this study was to assess the contribution of p66 Shc to regulation of vascular responsiveness associated with hypertension-induced nephropathy. Dual salt-sensitive (SS) rats exhibit many traits associated with salt-sensitive hypertension in man and became a well-established model for the study of salt-sensitive hypertension and accompanying cardiovascular disorders. By combining the precise modification of rat Shc1 gene with in vivo knock-in strategy we have generated a panel of mutant rat strains on the genetic background of SS rats. Endothelin-1 (ET-1), an important player in hypertension-related kidney diseases, induces the phosphorylation of p66 Shc serine 356 residue which is essential for p66 Shc to promote oxidative stress-related pathologies. ET-1-mediated elevation of intracellular Ca2+ is strongly linked to renal microvascular contraction and is crucial for ET-1-induced contraction of smooth muscle cells. We used two-photon imaging of intracellular Ca2+ handling in renal resistance arteries isolated either from wild type or p66 Shc1 knockout rats to investigate the role of p66 Shc in ET-1-mediated calcium signalling. We here report that overexpression of p66 Shc, observed in SS rats maintained on high-salt diet, partially impairs ET-1-mediated intracellular calcium handling in renal resistance arteries. ET-1-treated renal microvessels isolated from p66 Shc1 knockout rats demonstrate an increased elevation of intracellular calcium concentration when compared to renal vessels isolated from wild type SS rats. Since glomerular damage is one of direct consequences of renal vascular dysfunction, we have carried out glomerular injury scoring on PAS-stained paraffin sections. The comparison of glomerular damage in p66 Shc1 knockout and wild type SS animals revealed the mitigation of glomerular damage in the absence of p66 Shc. Our data suggest that p66 Shc knockout restores the calcium handling by ET-1 in smooth muscle cells of
isolated rat renal microvessels and mitigates renal damage in rats with hypertension-induced nephropathy.

3.28
THE DOMINANCE OF RENIN-ANGIOTENSIN SYSTEM BLOCKADE OVER ENDOTHELIN RECEPTOR A BLOCKADE IN LOWERING OF BLOOD PRESSURE IN HETEROZYGOUS REN-2 TRANSGENIC RATS

Ivana Vanečková1 and Josef Zicha1

1Dept. of Hypertension, Inst. of Physiology AS CR, Videnska 1083, Prague 4, 14220, Czech Rep.

Objective: We tested the hypothesis whether the addition of ETₐ receptor blockade to renin-angiotensin system (RAS) blockade would have other effects on principal vascular systems contributing to blood pressure (BP) maintenance in Ren-2 transgenic rats (TGR). **Design and Methods:** 5-week-old TGR rats were given either atenolol, or a combination of atenolol with angiotensin receptor blocker losartan, angiotensin converting enzyme inhibitor captopril, or direct renin inhibitor aliskiren for 4 weeks. At the end of the study, basal BP and acute BP responses to consecutive blockade of renin-angiotensin (RAS), sympathetic nervous (SNS), and nitric oxide (NO) systems were determined in conscious rats. Moreover, BP responses to acute inhibition of nifedipine-sensitive calcium influx through voltage-dependent calcium channels (L-VDCD) were measured. **Results:** Atenolol alone partially lowered BP, while in combination with all three RAS blockers BP was fully normalized. The BP lowering effects of all three RAS-blocking agents was dependent on the attenuation of both RAS- and SNS-dependent vasoconstriction. In all atenolol-treated groups, NO-dependent vasodilation was substantially reduced and calcium influx through L-VDCD significantly decreased. **Conclusion:** Although the BP-lowering effects of combined ETₐ blockade and RAS blockade is predominantly dependent on the effects mediated by RAS blockade, further effects are attributable to ETₐ blockade. Grant 304/12/059-Czech Science Foundation.

3.29
LINAGLIPTIN PROVIDES CEREBROVASCULAR PROTECTION VIA UPREGULATION OF ENDOTHELIAL ET-1 AND ETB RECEPTORS IN DIABETES

Mohammad Abdolali1,2, Trevor Hardjianto1, and Arjun Fegal1,3

We have shown that glycemic control with metformin or endothelin-1 (ET-1) inhibition with bosentan prevents AND restores diabetes-mediated pathological remodeling and neovascularization of the cerebrovasculature. Our recent data suggest that linagliptin, a member of the dipeptidyl peptidase-4 (DPP-4) inhibitor class of oral hypoglycemic agents, prevents cerebrovascular remodeling and dysfunction independent of its blood glucose lowering effects. We hypothesized that linagliptin provides cerebrovascular protection via modulation of the ET-1 system. **Methods:** 24-week-old diabetic (Hemoglobin AIC >6.5%) and nondiabetic Wistar rats were treated for 4 weeks with either vehicle chow or chow containing 166mg/kg linagliptin. Retinal arterial capillary formation was measured as a surrogate marker for pathological neovascularization in diabetes. Brain microvascular endothelial cells (BMVEC) isolated from control or diabetic rats were also treated with (100 nM) linagliptin. **Results:** Linagliptin treatment significantly decreased retinal arterial capillaries in diabetes. BMVEC from diabetic animals showed a significant reduction in ET-1 and ET-B receptor expression. Linear and tube formation assays. Expression of ET-1 and ET-B receptor were assessed using ELISA, RT-PCR and immunoblotting after treatment of BMVEC with linagliptin. **Results:** Linagliptin treatment significantly decreased retinal arterial capillaries in diabetes. BMVEC from diabetic animals showed a significant reduction in ET-B receptor expression. **Conclusions:** Our results suggest that linagliptin-mediated increases in ET-1 and ETB provide cerebrovascular protection in a feed-forward mechanism.

3.30
ENDOTHELIN-1: A FINAL COMMON PATHWAY LINKING PLACENTAL ISCHEMIA TO ENDOTHELIAL DYSFUNCTION AND HYPERTENSION DURING PREECLAMP-SIA

Joey Granada1

1Physiology, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 35216.

Despite being one of the leading causes of maternal death and a major contributor of maternal and perinatal morbidity, the mechanisms responsible for the pathogenesis of preeclampsia (PE) has yet to be fully elucidated. Growing evidence supports the concept that the placenta plays a central role in the pathogenesis of PE and that reduced uteroplacental perfusion leads to release of soluble placental factors such as the antiiangiogenic factor (sFlt-1) and the mitogen molecule factor (sEng) and increased expression of the agonistic antibody to the angiotensin II type 1 receptor (AT1-AA). There is growing evidence to suggest an important role for endothelin-1 (ET-1) in the pathophysiology of preeclampsia. Multiple studies have examined circulating levels of ET-1 and found elevated levels of plasma ET-1 in the preeclamptic group, with some studies indicating that the level of circulating ET-1 correlates with the severity of the disease symptoms. ET-1, however, is present in normal serum levels typically do not reflect tissue levels of the peptide. Animal studies from our lab has shown that a number of experimental models of preeclampsia (placental ischemia, sFlt-1 infusion, TNF-α infusion, and AT1-AA infusion) are associated with elevated tissue levels of ET-1. Moreover, we have reported that hypertension in pregnant rats, induced by placental ischemia or chronic infusion of sFlt-1, TNF-α, or AT1-AA can be completely attenuated by ETₐ receptor antagonists, strongly suggests that ET-1 appears to be a final common pathway linking factors produced during placental ischemia to elevations in blood pressure. The findings that antagonism of the endothelin-A receptor is beneficial in numerous animal models of PE suggest that the ET system may be an intriguing target for pharmacological intervention in PE.
levels of ET-1 exaggerate diabetes-induced endothelial dysfunction. This may be
initiated by streptozotocin treatment (STS, 55 mg/kg/day, ip) for 5 days in 6-week old male wild-type mice and in mice overexpressing human ET-1 (referred to as eET-1). Mice were studied 14 weeks after these interventions. Blood glucose, plasma ET-1 levels, mesenteric artery (MA) reactivity, mitochondrial superoxide production in aorta and endothelial nitric oxide synthase (Nos3), superoxide dismutase 1 (Sod1) and 2 (Sod2) mRNA expression in MA were determined. Results: STZ-induced diabetes was confirmed by increased glycemia in WT (P<0.001). Plasma ET-1 was increased in 5-week-old mice (15±4 vs 16±0.04 pg/ml, P=0.05) and STZ-treated eET-1 (+0.96 vs 0.8±0.1 pg/ml, P=0.05) to respective WT controls. Diabetes caused a 27% reduction in vasodilator responses to acetylcholine in WT (P=0.05), which was further decreased by 20% in eET-1 (P<0.05). Mitochondrial superoxide production was increased 1.8-fold by diabetes in WT (P=0.05) and further augmented by 31% in eET-1 (P=0.05). Nos3 expression was increased by 43% in vehicle-treated eET-1 compared to WT (P=0.05). Diabetes reduced Nos3 expression in eET-1 by 31% (P=0.05) but not in WT. Diabetes caused an increase in Sod1 (52%, P=0.05) and Sod2 (32%, P=0.05) expression in WT but not in eET-1. Conclusions: Increased levels of ET-1 exaggerate diabetes-induced endothelial dysfunction. This may be caused by a decrease in Nos3 expression, an increase in mitochondrial oxidative stress and a decrease in antioxidant capacity. This work was supported by Canadian Institutes of Health Research (CIHR) grants 37917 and 102606; a Canada Research Chair on Hypertension and Vascular Research and by the Canadian Fund for Innovation, all to ELS, and to fellowships to NIK (Fonds de recherché en santé du Québec), SO (CIHR), and TL (Richard and Edith Strauss Postdoctoral Fellowship).

3.33 ENDOThELIN-1 OVEREXPRESSiON PRESERVED ENDOThelial FUNCTION iN MICE WITH VASCULAR SMOOTH muscle CELL-RESTRICTED PPARγ KNOCKOUT

Pierre Paradis1, Noureddine Idris-Khodja1, Sofiane Ouerd1, Sofiane Ouerd1, Michelle Offenmann1, Frank J. Gonzalez1, and Ernesto L. Schirrini2

Objective: Peroxisome proliferator-activated receptor γ (PPARγ) agonists reduce blood pressure (BP) and vascular injury in hypertensive rodents and humans. Pparγ inactivation in vascular smooth muscle cells (VSMC) using a tamoxifen inducible Cre-Lox system enhanced angiotensin II-induced vascular injury. Transgenic mice overexpressing endothelin (ET-1) selectively in the endothelium (eET-1) exhibit endothelial dysfunction, increased oxidative stress and inflammation. We hypothesized that inactivation of Pparγ in VSMC (smPparγ−/−) will exaggerate ET-1-induced vascular damage. Methods and Results: Eleven-week-old male control, eET-1, smPparγ−/− and eET-1/smPparγ−/− mice were treated with tamoxifen (1 mg/kg/day, sc.) for 3 weeks and sacrificed at 6 weeks later. Systemic BP was 14 mmHg higher in eET-1 compared to control (P=0.05) and unaffected by Pparγ inactivation. Mesenteric artery (MA) vasodilatory responses to acetylcholine were reduced by 37% in smPparγ−/− (P=0.05) compared to control. Reactive oxygen species levels were increased in eET-1 (70%, smPparγ−/− (120%) and eET-1/smPparγ−/− (180%) compared to control (P<0.05). MA non-myocyte chemoattractant protein-1 expression was 70% higher in smPparγ−/− compared to control (P=0.05), and unaffected by ET-1 overexpression. Perivascular fat monocytic/macrophage infiltration was 2-fold higher in eET-1 and smPparγ−/− compared to control (P=0.05), and further increased by 68% in eET-1/smPparγ−/− (P=0.05). Nitric oxide synthase (Nos3) mRNA expression was increased by 21% in eET-1 compared to WT (P=0.05). Nos3 expression was 3.7- and 2-fold in eET-1 and smPparγ−/− compared to WT, respectively (P=0.05). The Edna/Edna endorgan mRNA ratio was decreased by 29% in eET-1/smPparγ−/− compared to smPparγ−/− (P=0.05). Conclusion: Increased ET-1 paradoxically preserves endothelial function in mice with smPparγ inactivation, despite enhanced oxidative stress and inflammation. This work was supported by Canadian Institutes of Health Research (CIHR) grants 37917 and 102606, a Canada Research Chair on Hypertension and Vascular Research and by the Canadian Fund for Innovation, all to ELS, and by fellowships to NIK (Fonds de recherche en santé du Québec), SO (CIHR), and TL (Richard and Edith Strauss Postdoctoral Fellowship).

3.34 ROLE OF THE MYELOID ENDOTHELIN-B RECEPTOR IN ANGIOTENSIN II MEDIATED EN-ORGAN DAMAGE

Lea Gulya1, Neeroj Dinari1, Philippe Bonnin1, Veronique Baude1, Rebecca Mordhorst1, Alicia Cepp2, Olivia Lenor1, David Webb1, David Kluth1, and Pern-Louis Tharaux1

1Vascular Biology, Ctr. de Res., INSERM PARCC, Rue Leblanc, Paris, 75015, France. 2Clinical Pharmacology Unit, Univ. of Edinburgh, Little France Crescent, Edinburgh, EH16 4TJ, UK. 3For Inflammation Res., Univ. of Edinburgh, Little France Crescent, Edinburgh, EH16 4TJ, UK.

Introduction: Hypertension and diabetes are major risk factors for cardiovascular disease in obesity. Endothelin (ET)-1 system activity is elevated and is associated with insulin resistance and obesity (OB). ACE inhibitor (A16) treatment is as efficacious as regular aerobic exercise in lowering ET-1 system activity in OB adults. 35 sedentary, OB adults completed three months of
either vitamin C (500 mg/day, timed-release) supplementation (VC; n=20; 15M/5F, 58±2 yr; BMI: 31.4±0.6 kg/m²) or acetyl (walking) exercise training (EX; n=15; 105±7±2 yr; 29±0.7 kg/m²). Forearm blood flow (FBF; plethysmography) responses to intra-arterial infusions of ET-1 (50 pmol/min for 20 min) and selective ET₄ receptor blocker (BQ-123, 100 nmol/min for 60 min) were determined before and after intervention. There were no anthropometric changes in response to either VC or EX. Vasoreaction to ET-1 increased similarly (~2-fold; P<0.05) in response to both interventions. Prior to intervention, resting FBF to BQ-123 was significantly increased (~20%; P<0.05) in both groups. Similar to EX, after VC supplementation, BQ-123 did not elicit a significant change in resting FBF. Vitamin C supplementation represents an effective lifestyle strategy for reducing ET-1-mediated vasoconstrictor tone in OW/OB adults.

3.37 BORDERLINE-HIGH TRIGLYCERIDES AND ENDOTHELIN-1 VASOCONSTRCTOR TONE

Caitlin Dow¹, Jared Greiner¹, Kylo Diehl¹, Brian Stauffer², and Christopher DeSouza²
1Integrative Physiology, Univ. of Colorado, Boulder, Boulder, CO, 80309, 2Dept. of Med., Univ. of Colorado, Denver, 12605 E. 16th Ave., Aurora, CO, 80045.

Borderline high fasting plasma triglyceride (TG) concentrations (150-199 mg/dL) are an independent risk factor for cardiovascular (CV) disease risk, though the mechanisms underlying this risk are unclear. Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor synthesized and released by the endothelium. Enhanced ET-1 vasoconstrictor tone is linked to CV pathologies. We hypothesized that ET-1 system activity is enhanced in adults with borderline-high plasma TG concentrations compared with those with normal plasma concentrations. Eighteen sedentary, overweight adults (43-70 years) were studied: 9 (7M/2F; BMI: 28.0±1.2 kg/m²) with normal plasma TG concentrations (56-120 mg/dL); and 9 (7M/2F; BMI: 27.1±1.0 kg/m²) with borderline-high plasma TG concentrations (150-192 mg/dL). Forearm blood flow (FBF; plethysmography) was determined in response to intra-arterial infusions of ET-1 (5 pmol/min for 20 min) and a selective ET₄ receptor blocker (BQ-123, 100 nmol/min for 60 min). Vasoreaction to ET-1 was ~10-fold lower (P<0.05) in the borderline-high TG compared with the normal TG group. In response to BQ-123, FBF increased ~25% in the borderline-high TG versus ~10% in the normal TG group (P<0.05). These results indicate that borderline-high TG concentrations are associated with increased ET-1 mediated vasoconstrictor tone. Enhanced ET-1 system activity may contribute to the increased cardiovascular burden associated with elevations in TG concentrations.

3.38 C-REACTIVE PROTEIN DOES NOT INFLUENCE ENDOTHELIN-1 SYSTEM ACTIVITY IN HEALTHY ADULTS

Caitlin Dow¹, Jared Greiner¹, Grace Linzenberg¹, Brian Stauffer², and Christopher DeSouza²
1Integrative Physiology, Univ. of Colorado, Boulder, Boulder, CO, 80309, 2Dept. of Med., Univ. of Colorado, Denver, 12605 E. 16th Ave., Aurora, CO, 80045.

C-reactive protein (CRP) is an inflammatory cytokine that has been shown to be an independent predictor of future atherosclerotic risk. Endothelin-1 (ET-1) is a potent vasoconstrictor peptide synthesized and released from the endothelium. In addition to its role in vasoconstriction, ET-1 hyper-bioactivity is atherogenic. ET-1 is sensitive to inflammatory stimuli; however, the influence of CRP on ET-1 system activity is unknown. We tested the hypothesis that ET-1-mediated vasoconstrictor tone is enhanced in adults with elevated plasma CRP concentrations. Sixty non-obese, sedentary adults (42-70 years) were studied: 20 (13M/7F; BMI: 26.5±0.5 kg/m²) with normal CRP (1.0-3.0 mg/dL); 20 (13M/7F; BMI: 27.9±0.8 kg/m²) with CRP >3.0 mg/dL (high CRP; 6.3±0.5 mg/dL). Forearm blood flow (FBF) responses to intra-arterial infusions of ET-1 (50 pmol/min for 20 min) and selective ET₄ receptor blocker (BQ-123, 100 nmol/min for 60 min) were determined before and after intervention. There were no anthropometric changes in response to either CRP or ET-1 intervention. Prior to intervention, resting FBF was significantly increased (~20%; P<0.05) in both groups. Similar to EX, after VC supplementation, BQ-123 did not elicit a significant change in resting FBF. Vitamin C supplementation represents an effective lifestyle strategy for reducing ET-1-mediated vasoconstrictor tone in OW/OB adults.

3.39 ENDOTHELIN-1 STIMULATES ENDOTHELIAL-DERIVED MICROPARTICLE RELEASE

Philip J. Kuchulis¹, Tyer D. Hammer¹, Junior G. Hijmans¹, Kylo J. Diehl¹, Grace N. Linzenberg², Ryan T. Fay¹, Whitney N. Radick³, Jared J. Greiner¹, and Christopher A. DeSouza²
1Integrative Physiology, Univ. of Colorado, Boulder, 354 UCB, Boulder, CO, 80309, 2Dept. of Med., Univ. of Colorado, Denver, 12605 E. 16th Ave., Aurora, CO, 80045.

Endothelial microparticles (EMPs) are vesicles shed from the endothelium and are a marker of endothelial injury. Elevated circulating EMPs are associated with several cardiovascular, inflammatory and metabolic diseases. Endothelin (ET-1), a potent vasoconstrictor peptide, is associated with endothelial damage and athrogenesis. We tested the hypothesis that ET-1 increases the release of EMPs from arterial endothelial cells. In three separate experimental units, human aortic endothelial cells (HAEcs) were grown to confluence; thereafter, cells were incubated for 24 hours in the absence and presence of ET-1 (100 and 200 pmol) and the selective ET₄ receptor antagonist, BQ-788 (1µmol). Following incubation, media was collected, centrifuged (200 x g; 10 min). Prior to analysis, samples were centrifuged (13,000 x g; 2 min) and the selective of the supernatant was collected and microparticles were labeled with anti-human CD31/CD42b, a non-specific surface marker. Samples were analyzed using flow cytometry and EMPs were defined as CD31+/CD42b- events less than 1.0 μm. EMP release was increased in response to both interventions. Prior to intervention, resting FBF to BQ-123 was significantly increased (~20%; P<0.05) in both groups. Similar to EX, after VC supplementation, BQ-123 did not elicit a significant change in resting FBF. Vitamin C supplementation represents an effective lifestyle strategy for reducing ET-1-mediated vasoconstrictor tone in OW/OB adults.

3.40 EARLY-LIFE STRESS INDUCES EPIGENETIC REGULATION OF THE ET SYSTEM IN ADULT MALE MICE

Duo Hu¹, Mariam Banerji¹, David M. Pollock¹, Jennifer S. Pollock¹

Objective: Diabetes is associated with macrovascular and microvascular complications leading to cardiovascular disease. We have previously shown that endothelin (ET-1) contributes to both macrovascular dysregulation and remodeling in the Goto-Kakizaki (GK) rat model of type 2 diabetes. We also reported that glycemic control with metformin prevented vascular changes and decreased plasma ET-1 levels in this model. Since metformin has direct antioxidant effects in addition to its insulin sensitizing actions, discerning whether the beneficial effects were due to glycemic control or due to direct effects of metformin remained unknown. Thus, we...
used linagliptin (LINA), a member of the dipeptidyl peptidase-IV (DPP-IV) inhibitor class of glucose lowering agents, to further investigate the impact of glycemic control on ET-1 activation and vascular dysfunction in diabetes. We hypothesized that glycemic control with LINA treatment would decrease blood glucose levels, plasminogen activator inhibitor-1 (PAI-1), and ameliorate the increase in ET-1-induced vascular hyperreactivity in the GK rat.

Methods and Results: Male diabetic GK (HA1C% > 6.5%) and Wistar rats (age 24 weeks) were fed either normal or LINA chow for 4 weeks at a concentration of 166 mg/kg of chow (n=5-6/group). Plasmin was collected following treatment, and basilar arteries were mounted on a wire myograph where a dose response curve to ET-1 (10^{-10} - 10^{-7} M) was performed. LINA treatment did not lower blood glucose in rats (HA1C%: GK: 8.02±0.27 vs. LINA: 8.20±0.33) but decreased plasma ET-1 levels (pg/ml) in diabetic GK rats (Wistar: 1.2±1.00, Wistar LINA: 1.21±0.02, Wistar: 1.85±0.02**, LINA: 1.75±0.01***, **p=0.001 vs. Wistar, ***p=0.01 vs. GK). LINA treatment decreased ET-1-induced contraction in basilar arteries from diabetic rats (Area Under the Curve: Wistar: 562.6±11.1, Wistar LINA: 410.8±63.34, GK: 515.15±6.25**, LINA: 548.7±34.86**, ***p=0.001 vs. Wistar, **p=0.05 vs. GK).

Conclusions: Contrary to our hypothesis, linagliptin did not decrease blood glucose levels in the GK rats. This allowed us to examine the effects of linagliptin on the ET-1 system independent of glycemic control. We show here for the first time an effect of linagliptin on plasma ET-1 levels and ET-1 vascular hyper-reactivity in GK rats. DPP-IV inhibition with linagliptin holds potential as a possible therapy for diabetic vascular disease due to its reduction of ET-1 levels and consequent vasoprotection.

3.45

HIGH GLUCOSE-MEDIATED INCREASE IN PERINUCLEAR ETA AND ETB EXPRESSION IN HUMAN BRAIN VASCULAR SMOOTH MUSCLE CELLS IS NOT AMELIORATED BY LINAGLIPTIN

Abdul2, Yasir1, Trevor Hardigan1, and Advieh Ergul2

1Physiology, Georgia Regents Univ., 1120 5th St, Augusta, GA, 30912
2Physiology, Charlie Norwood VA Med. Ctr., 1851 15th St., Augusta, GA, 30904

Introduction: We have previously reported that endothelin-1 (ET-1) promotes cerebrovascular remodeling in diabetes via ETA and ETB receptor activation on vascular smooth muscle cells. Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as a new class of anti-diabetic therapies. We recently observed that treatment with linagliptin (DPP-IV inhibitor) in type-2 diabetic Goto-Kakizaki (GK) rats prevents vascular remodeling and improve the contractile functions independent of its blood glucose lowering effect. Thus, the goal of the current study was to explore the effect of linagliptin on the brain vascular smooth muscle cell (BVSMC) ET system in an in vitro model.

Hypothesis: Linagliptin treatment can prevent the high glucose-induced increase in secretion of ET-1 and expression of ET receptors in BVSMCs.

Methods: Serum starved human BVSMCs were subjected to either normal glucose (5.5mM) or high glucose (25 mM) containing media and treated with the linagliptin (100nM) for 24 hours. Media was collected for measurement of ET-1 by ELSIA and cell lysates were prepared for the measurement of ETA and ETB receptor expression. Cells were also cultured on glass slides and incubated with ETA and ETB receptor antibodies for the immunostaining.

Results: Immunostaining showed a remarkable increase in expression of ETA receptor in peri-nuclear areas of high glucose treated BVSMCs, however there was no significant difference after linagliptin treatment. Similarly, ETB receptor expression was also increased in the high glucose treated cells but the linagliptin treatment did not change the expression. High glucose exposure increased (not significant) the expression of both ETA and ETB receptors in cell lysate of BVSMCs. The linagliptin treatment did not show any significant difference in the expression of both ETA and ETB receptors. The secretion of ET-1 measured in media was also not significantly different between the groups.

Conclusions: The dose of linagliptin and the duration of exposure used in the present study did not show any significant effect of linagliptin on ET receptor system of BVSMCs. Thus, it is concluded that the attenuation of brain vascular remodeling by linagliptin could be attributed through the other cell type (like endothelial cells) of the vasculature and may be independent of the ET system. High glucose-induced peri-nuclear ET receptor localization needs to be further studied.

3.46

POTENTIAL ASSOCIATION OF CIRCULATORY LEVEL OF ENDOTHELIN-1 AND DIABETES IN RURAL WOMEN IN BANGLADESH

Subrina Jasmin1, Yjito Matsuishi2, Naoto Yamaguchi2, Sayeda Sultana1, Satoshi Gando2, Satoshi Sakai2, Satoru Kawano2, Taro Mizutani1, Atsuhiko Nukina1, and Takashi Miyauchi1

1Dept. of Emergency and Critical Care Med., Univ. of Tsukuba, Tennodai 1-1-1, Ibaraki, Japan, 316-8580, and 2Physiology, Charlie Norwood VA Med. Ctr., 1851 15th St., Augusta, GA, 30904

Introduction: Diabetes Mellitus (DM) is a global epidemic affecting approximately 285 million people and has a high (and rising) prevalence in both developed and, more recently, developing countries. DM has, in particular, become of importance and health concern in the South Asian region, with an estimated increase in the prevalence of diabetes of over 151% between the years 2000 and 2030. Endothelin-1 (ET-1), a potential marker of endothelial dysfunction has been shown to be elevated in diabetic subjects. However, to date, the circulatory profile of ET-1 and its association with diabetes mellitus (DM) have not been investigated in any South Asian country like in Bangladesh. The present study aimed at investigating circulating levels of ET-1 in subjects with and without DM and further examined the association of ET-1 with clinical and metabolic parameters in Bangladeshi rural women.

Main Methods: A total of 2022 rural Bangladeshi women were studied using a cross-sectional survey. Then further analysis was done on a case control basis having DM (n=179) and non-DM (204). Multiple regressions were used to examine the association between circulatory ET-1 level and DM. We used the World Health Organization’s (WHO) STEPS approach (modified), health-related behaviour (step 1), basic physical measures (step 2) and basic biochemical investigations, such as levels of blood glucose and cholesterol (step 3).

Key findings: DM prevalence in the current study was 9.1%. ET-1 levels were significantly increased in diabetes subjects [DM vs. non-DM: 3.11 ± 0.16 vs. 1.97 ± 0.16, p < 0.001]. Multiple regression analysis considering ET-1 level as dependent variable, we found plasma glucose level and HDL-C is the independent determinants for plasma ET-1 levels in Bangladeshi rural women. Through tertile analysis, we found mean ET-1 levels significantly increase as levels of blood glucose increases (p for trend=0.001). Significance: A higher concentration of ET-1 among DM subjects suggests the possible endothelial dysfunction in this apparently healthy population. The relation of ET-1 and DM needs further investigations to define the clinical predictive value of plasma ET-1 levels in DM for the South Asian population. This work has been supported by Ministry of Education and Science in Japan.

3.47

AMELIORATION OF ACUTE LIVER INJURY WITH THE BLOCKADE OF PROTEASE ACTIVATED RECEPTOR (PAR)-2 THROUGH THE SUPPRESSION OF UPREGULATED LEVELS OF ENDOTHELIN-1 AND TNF-α IN A RAT MODEL OF ENDOXOEMIA

Subrina Jasmin1, Sohel Zaidi1, Nobukage Shimojo2, Shila Akhtar3, Arifir Rahman1, Yjito Matsuishi2, Naoto Yamaguchi2, Sayeda Sultana1, Satoshi Gando2, Satoshi Sakai2, Satoru Kawano2, Taro Mizutani1, and Takashi Miyauchi1

1Dept. of Emergency and Critical Care Med., Univ. of Tsukuba, Tennodai 1-1-1, Ibaraki, Japan, 316-8580, and 2Physiology, Charlie Norwood VA Med. Ctr., 1851 15th St., Augusta, GA, 30904

Introduction: Endotoxemia is a condition that is commonly associated with severe infection and septic shock. The liver is one of the organs that are normally damaged during the pathogenesis of sepsis; some studies have suggested that circulating endothelin (ET)-1 is elevated in sepsis. Here, we examined the time-dependent alterations of ET-1, NO and inflammatory cytokine, such as TNF-α in liver tissue in a septic rat model. Normal Wistar rats were administered with lipopolysaccharide (LPS: 15 mg/kg) and sacrificed at different time points (1h, 3h, 6h and 10h). The classical features of acute liver injury, such as infiltration of inflammatory cells, hepatocytic necrosis, were seen in LPS administered rats, and plasma bilirubin, GOT and GPT levels were also significantly changed. A 28-fold increase in ET-1 level was observed in liver tissue at 10 h after LPS administration, while a peak increase of 14-fold ET-1 mRNA level was seen 1 hour after LPS administration in liver tissue. Levels of hepatic TNF-α peaked (4-5-fold) at 1 hour of sepsis.

Conclusions: Endotoxemia often triggers exuberant inflammatory responses and activation of the coagulation cascade, and interactions between inflammation and coagulation may be important in this setting. Protease-activated receptors (PARs) connect coagulation proteases to cellular responses and represent one mechanism by which coagulation might affect inflammation. Of the 4 mammalian PARs, PAR1, PAR3, and PAR4 are activated by thrombin, and PAR2 can be activated by coagulation proteases Vila and Xa but not thrombin. Interestingly, PAR2 blocking peptide improved the status of liver injury, an effect that was associated with suppression of TNF-α elevation, and normalization of ET-1.

Conclusions: The present study revealed a distinct chronological expression of ET-1 in LPS-mediated liver injury and suggested that blockade of PAR2 played a crucial role in treating liver injury in the septic rats, via a
mechanism of the normalization of inflammation, coagulation, and vaso-active peptides including ET-1.

3.45 EFFECTS OF ENDOTHELIN ANTAGONISM ON MICRO-VASCULAR COMPLICATIONS SUCH AS DIABETIC ERECTILE DYSFUNCTION AND DIABETIC RETINOPATHY ARE PARTLY MEDIATED THROUGH RESTORATION OF ALTERED VEGF SIGNALING IN RATS

Subrina Jasmin1, Satoshi Sakai2, Sohelo Zaedi3, Majedul Islam4, Satoru Kayano5, Nobuaki Shimizu5, Yuji Hori5, Masahiro Miyazaki5, Katsuhiko Akiyama6, Tsuyoshi Mizutani5, and Takashi Miyashita3

1Dept. of Emergency & Critical Care Med., Univ. of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8575, Japan; 2Dept. of Cardiovascular Med., Univ. of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8575, Japan; 3Ch. for Tsukuba Adv. Res. Alliance (TARA), Univ. of Tsukuba, Tennodai 1-1-4, Tsukuba, 305-8575, Japan

(Purpose) Diabetes Mellitus (DM) causes both microvascular and microvascular complications. The diabetic patients often cause erectile dysfunction (ED), which is considered as the microvascular and neuropathic complications, in which vascular endothelial growth factor (VEGF) has been documented for its pathogenic significance in diabetic complications. We studied the effects of endothelin (ET) antagonism on the diabetic microvascular complications such as diabetic ED and diabetic retinopathy, and also on expression of VEGF in these tissues in the DM rats. (Methods) We used 3 weeks duration of streptozotocin (STZ)-induced DM rats to assess the VEGF expression in penile tissue and retinal tissue, and the effects of ET antagonism has been studied on these changes. Male rats were administered saline vehicle or STZ (65 mg/kg IP). One week after the injection, the animals were divided into four groups: the vehicle group, the ET-A/B dual receptor antagonist SB209670 (1 mkg/kg/day), or saline for 2 weeks by osmic mini-pump. The ET-1 level in DM rats was higher by 20% than non-DM rats. A 30% decrease in VEGF expression in penile tissue was seen in DM rats, and SB209670 partly prevented erectile dysfunction through restoration of VEGF reduction. SB209670 also partly prevented the development of diabetic retinopathy through restoration of VEGF overexpression. (Conclusion) ET antagonists like SB209670 is effective in preventing diabetic microvascular complications such as diabetic erectile dysfunction and diabetic retinopathy by partly mediated through restoration of altered VEGF signalling in these DM rats.

3.46 HIGH FAT AND HIGH GLUCOSE SYNERGISTICALLY IMPAIR BRAIN MICROVASCULAR ENDOTHELIAL CELL SURVIVAL AND ANGIOPOTENTIAL INDEPENDENT OF ET-1

John Paul Valenzuela1, Trevor Hardigm1, Mohammed Abdelsad1, Yasar Abdul1, and Ayesha Figl1,2

Physiology, Georgia Regents Univ., 1120 15th St., Augusta, GA, 30912; Clinical & Exp. Therapeutics, Univ. of Georgia Coll. of Pharmacy, 250 W. Green St, Athens, GA, 30602; Med. Ctr., Charlie Norwood VA, 250 15th St., Augusta, GA, 30901.

Introduction: We have shown that diabetes causes functional microvascularization in the brain and endothelin-1 (ET-1) receptor antagonism with bosentan prevents and restores the pathologic angiogenesis in the Goto-Kakizaki (GK) model of diabetes. We now have evidence that diet induced metabolic disease also causes dysfunctional angiogenesis. Accordingly, in this study we tested the hypothesis that exposure of primary brain microvascular endothelial cells (BMVECs) to high glucose (HG) AND high palmitate (Pat) is in vitro model for diet-induced metabolic disease, activates the ET system and resulting inflammation leads to poor cell survival and attenuates pro-angiogenic properties. Methods: BMVECs were cultured in normal glucose (Control), HG (12.5mM), Pat (200mM), or HG plus Pat for 14 hours before collecting the cell lysate and medium. Cell survival (MTT assay and cell counts), angiogenic properties (migration and tube formation), ET-1, ET-B receptors, and inflammatory mediators (TNFα and toll like receptors-TLR4) were measured. Results: HG plus Pat combination significantly reduced cell number, viability, migration and tube length and increased TNFα and TLR4 levels (Table). In contrast to our hypothesis, there was no difference in ET-1 secretion or ET-B receptor levels. Discussion: These results suggest that mild elevations in glucose and free fatty acids impair angiogenic properties of BMVECs. While these changes coincide with increased TLR4 and TNFα levels, they are not associated with changes in ET system. Ongoing studies will determine whether ET receptor blockade will prevent downstream inflammation and impairment of angiogenic potential. Funding Support: VA Merit BX00347, NS070239 and NS083559.

3.47 ET1 RECEPTOR BLOCKADE INHIBITS LEUKOCYTE ACTIVATION AND ADHESION IN SICKLE CELL DISEASE

Dana Gusziesca1, Haiyan Xiao2, James Parkinson3, Carol Dickerson3, Shobha Yoginathalu2, Jennifer S. Pollock1, David M. Pollock1, and Steffen Meiler1

Leukocytes (WBCs) in Sickle Cell Disease (SCD) are in an activated state characterized by increased ROS, cytokine production and adhesiveness. Endothelin-1 (ET-1) is elevated in SCD and is also known to mediate local inflammation and oxidative stress. Here we examined whether ET-1 contributes to WBC activation and endothelial cell adhesion in a transgenic mouse model of SCD. Cytokine and ROS production were measured at baseline and after ET-1 exposure in SCD and control WBCs. WBC-endothelial interactions were visualized by intravital microscopy in the vasculature of the calvarial bone marrow under normal or hypoxia/oxidation (H/O) conditions after 8 weeks of treatment with either Ambri-sentan (AMBR), the non-selective ET-A/ET-B receptor antagonist Bosentan (BOS) or vehicle. Leukocytes from SCD mice produced higher ROS and cytokine levels at baseline compared to controls. At normoxia, blockade with ROS enhanced WBC rolling/adhesion, suggesting an important role for ET-1 signaling at baseline. Following H/O, both antagonists were equally effective in decreasing WBC rolling/adhesion. Our results suggest that ET-1 promotes leukocyte adhesion to the vascular endothelium in SCD. Both selective (ET-A) and non-selective (ET-A/B) receptor blockade abrogated this response, which may have important therapeutic implications for patients with SCD. Supported by HL-117684.

3.48 STIMULATION OF ET1 RECEPTORS BY IRL-1620 MODULATES THE PROGRESSION OF ALZHEIMER’S DISEASE

Seema Bhatia1, Mary Lonsdorf1, Ardi Gulati2, Christopher Nguyen2, and Courtney Shepherd3

1Chicago Coll. of Pharmacy, Midwestern Univ., 555 31st St., Downers Grove, IL, 60515; 2Coll. of Dental Med., Midwestern Univ., 555 31st St, Downers Grove, IL, 60515; 3Chicago Coll. of Osteopathic Med., Midwestern Univ., 555 31st St., Downers Grove, IL, 60515.

Studies indicate that stimulation of ET1 receptors provide neuroprotection. The purpose of this study was to determine the effect of selectively activating the ET1 receptors following Aβ1-42 challenge in an in vivo model of spatial memory. All procedures were approved by a local institutional animal care and use committee. Aβ1-42 treatment increased the number of blood vessels labeled with VEGF compared to vehicle. Additionally, cells showed positive staining for NGF (p<0.001) in Aβ1-42 treated rats. All ET1 receptors were stimulated in Aβ1-42 treated rats showed a significant improvement in spatial memory. Interestingly, Aβ1-42 treatment increased the number of blood vessels labeled with VEGF compared to vehicle. Additionally, cells showed positive staining for NGF (p<0.001) in Aβ1-42 treated rats. All ET1 receptors were stimulated in Aβ1-42 treated rats showed a significant improvement in spatial memory. Interestingly, Aβ1-42 treatment increased the number of blood vessels labeled with VEGF compared to vehicle. Additionally, cells showed positive staining for NGF (p<0.001) in Aβ1-42 treated rats. All ET1 receptors were stimulated in Aβ1-42 treated rats showed a significant improvement in spatial memory.

3.49 ENDOTHELIN A RECEPTOR DRIVES INVADOPEDIA FUNCTION AND CELL MOTILITY THROUGH B-ARRESTIN/PDZ-RHOGDF PATHWAY IN OVARIAN CARCINOMA

2015 APS Conference
14th International Conference on Endothelin: Physiology, Pathophysiology and Therapeutics
ABSTRACTS OF INVITED AND VOLUNTEERED PRESENTATIONS
REGULATION OF THE CARDIAC ENDOTHELIN SYSTEM
AND CARDIOMYOCTYE HYPTERTROPHY BY GPER

Matthias Meyer, Natalie Fredette, Christoph Daniel, Kerstin Amann, Matthias Bagnato, and Eric Prat

Dept. of Internal Med., Univ. of New Mexico HhSc. Ctr, 915 Camino de Salud NE, Albuquerque, NM, 87131, Dept. of Nephrology, Friedrich-Alexander- Univ. Erlangen-Nürnberg, Krankenhausstrasse 8-10, Erlangen, 91054, Germany, 3Molecular Internal Med., Univ. of Zürich, LTK Y44 G22, Zürich, 8057, Switzerland.

Aging is a major risk factor for cardiac hypertrophy that is partly mediated by increased activity of the local endothelin system. Endothelin-1 potently induces cardiomyocyte hypertrophy through stimulus-dependent activation of ETA or ETB receptors, which are involved in a complex cardiac signaling network of G protein-coupled receptors that control cardiomyocyte adaptation. Because signaling pathways of the G protein-coupled oxygen receptor (GPER) and endothelin receptors functionally interact in vascular smooth muscle, we hypothesized that GPER may also play a role in the age-dependent activation of the cardiac endothelin system. Using hearts from senescent (24 month-old) GPER-deficient and wild-type mice, we analyzed myocardial mRNA expression of prepro-endothelin-1, endothelin converting enzymes (ECE), as well as ETA, ETB and GPER receptors by RT-PCR. In addition, cardiomyocytes were determined. In hearts of GPER-deficient mice, we found reduced expression of ECE-2 (2.3-fold, n=6, p<0.05 vs. wild-type mice), a rate-limiting enzyme in endothelin-1 synthesis. Furthermore, ETB receptor mRNA levels were decreased (1.7-fold, n=6, p<0.05 vs. wild-type mice), while ETB receptor or prepro-endothelin-1 expression was unaffected by GPER deletion. Consistent with lower ECE-2 and ETB receptor expression that may result in reduced myocardial endothelin-1 signaling, cardiomyocyte size was decreased 1.9-fold by GPER deletion (28±2 vs. 51±3 μm, n=6, p<0.0001 vs. wild-type mice). In conclusion, these findings indicate that endogenous GPER is partly required for activation of the endothelin system and cardiomyocyte hypertrophy during cardiac aging, suggesting a localized interaction between GPER, ECE-2, and endothelin receptor signaling that may be pharmacologically relevant to target age-dependent cardiac hypertrophy and resulting congestive heart failure. Supported by NIH training grant HL07736.

3.52 ENDOTHELINS AS MARKERS OF CARDIOVASCULAR PROLIFERATION IN ADULTS WITH ISOLATED DEFICIENCY OF GROWTH HORMONE (IDGH)

1Dept. of Pathology, Fed. Univ. of São Paulo, Botucatu St., no. 740, Vila Clementino, São Paulo, 04039-032, Brazil, 2Dept. of Molecular Anatomy, Dept. of Morphology, Fed. Univ. of Sào Paulo, Marechal Rondon Ave., b/b, Roso Elze, São Cristóvao, 40305-100, Brazil, 3Dept. of Med., Fed. Univ. of Sào Paulo, Claudio Batista St., b/b Sanatorium Anacaju, 40305-100, Brazil, 2Dept. of Clinical Biochemistry, Univ. Coll. London, Pond St., London, UK.

Background: In the city of Itabaianinha, located on the southern state of Sào Paulo, Brazil, there is a group of 105 individuals affected by isolated GH deficiency (IDGH) due to a mutation of the GH receptor gene (GHRH). Previous studies in patients with GH deficiency acquired in adulthood demonstrated increased cardiovascular morbidity and mortality. However, the literature claims that patients with elevated serum Endothelins (ET) have cardiovascular Risk (CVR) increased due to endothelial dysfunction caused by atherosclerosis. Objective. To evaluate serum levels of ET in adults with IDGH and its correlation with CVR. Methods: It is a descriptive and prospective case-control study. A total of 34 patients, 20 patients with IDGH coming of the city of Itabaianinha/SE and 14 healthy individuals residing in the city of Aracaju (state capital of Sào Paulo, Brazil) comprised the control. They were submitted to dosage of serum ET through Elisa test. All experiments were conducted in accordance with the Declaration of Helsinki. Statistical analysis was performed by measures of central tendency and mortality. However, the literature claims that patients with elevated serum Endothelins (ET) have cardiovascular Risk (CVR) increased due to endothelial dysfunction caused by atherosclerosis. Objective. To evaluate serum levels of ET in adults with IDGH and its correlation with CVR. Methods: It is a descriptive and prospective case-control study. A total of 34 patients, 20 patients with IDGH coming of the city of Itabaianinha/SE and 14 healthy individuals residing in the city of Aracaju (state capital of Sào Paulo, Brazil) comprised the control. They were submitted to dosage of serum ET through Elisa test. All experiments were conducted in accordance with the Declaration of Helsinki. Statistical analysis was performed by measures of central tendency and variance and comparisons between groups was performed by chi square test. The statistical significance level was less than 5% (p<0.05). Results: The control group was composed of seven men (50%) and seven women (50%) with mean age of 42.2 ± 19.9 years; while the dwarves sample consisted of 11 men (55%) and nine women (45%) with mean age of 46 ± 15.5 years. The mean values of the serum ET from control and dwarves sample was 7.078 ± 39.02 and for patients with IDGH was 25.15 ± 64.0 pg/ml (p=0.003 CI: 92%). Conclusion: It is concluded that the ET levels in patients with IDGH were inferior to controls, so it appears that people with IDGH have less cardiovascular events than healthy patients. But further studies are needed to corroborate this claim.

3.53 KNOCKOUT OF ENDOTHELIN-1 IN VASCULAR ENDO- THELIAL CELLS AMELIORATES CARDIAC MITOCHON- DRIANALYSIS AFTER MYOCARDIAL INFARCTION
IN DIABETES TYPE 2 MICE

Hans-Joachim Muller, Ken-Ichi Hirata, Kazuhiko Nakayama, Kei Ikeda, Keiko Yagi, and Noriaki Emoto

Background: Persistent elevation of circulating endothelin-1 (ET-1) has been detected in diabetic patients and associates with low cardiac function post myocardial infarction. However, the role of ET-1 in linking diabetic heart and myocardial infarction is not well understood. Several studies suggest that ET-1 can induce cardiomyocyte dysfunction which is an important feature of heart failure. Thus, we hypothesize that ET-1 might increase diabetic heart vulnerability to myocardial infarction through impairment of mitochondrial biogenesis and function. Methods: We induced diabetes mellitus type 2 in vascular endothelial cells specific-ET-1 knock out mice (VEETKO) and their wild type (WT) littermates using combination of streptozotocin injection and western diet. Six weeks after, we performed myocardial infarction using cryo-infarction procedure. Cardiac histology, function, gene expression, and mitochondrial biogenesis were evaluated one week after cryoinfarction. Results: Diabetic WT mice exhibited lower cardiac function, higher mitochondria structural abnormality, down-regulation of PGC-1α/NRF1/OXPHOS signaling, higher ADP/ATP ratio, and higher coronary blood flow compared to diabetic VEETKO. In vitro study revealed, ET-1 knock out mice, treated with combination of high glucose and ET-1. Conclusion: These results show that vascular ET-1 increase diabetic heart vulnerability post myocardial infarction by aggravating mitochondrial biogenesis impairment. Reducing circulating ET-1 level might be beneficial to protect diabetic heart from myocardial infarction by preserving mitochondrial biogenesis and function. Significance: This study is the first to show that ET-1 might increase diabetic heart vulnerability post myocardial infarction by aggravating mitochondrial biogenesis impairment. Reducing circulating ET-1 level might be beneficial to protect diabetic heart from myocardial infarction by preserving mitochondrial biogenesis and function.

3.54 ATTENUATION OF ENDOTHELIN-1-INDUCED CARDIOMYOCYTE HYPERTROPHY THROUGH ESTROGEN PRE-TREATMENT VIA NON-GENOMIC PATHWAY: POTENTIAL INTEGRATION WITH VEGF SYSTEM

Nobutake Shimojo1, Subrina Jesmin1, Yujiro Matsuishi1, Sohel Zaedi1, Shila Akhtar1, Amirul Rahman1, Sayeda Nusrat Sulima2, Kazuaki Aonuma3, Takehi Miyachi3, and Satoru Kawano3

1Emergency & Critical Care Med, Fac of Med, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan. 2Dept. of Cardiology, Shahaed Ziaur Raham Med Coll, Bogra City, Bogra, Bangladesh. 3Inst. of Clinical Med, Fac. of Med, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.

Estrogen (β-estradiol), the female hormone, has been reported to inhibit cardiac hypertrophy and apoptosis by different research groups in recent days. Thus, although the anti-hypertrophic action of estrogens has been known to be appreciated, the potential mechanism underlying the estrogen-mediated cardioprotection is unknown. Endothelin (ET-1), a potent vasoconstrictor, induces hypertrophic changes in neonatal cardiomyocytes at both morphological and molecular levels. Targeting ET-1 in the prevention of heart failure is crucial to suppress the cardiovascular diseases. Indeed, pathological cardiac hypertrophy progressively leads to heart failure. In the first part of this study, we investigated whether estrogen confers beneficial effect against ET-1-induced cardiomyocyte hypertrophy and if cardioprotective, then whether this estrogen mediated cardiac anti-hypertrophic action is genomic or non-genomic. The doses of estrogen and ET-1 were optimized based on preliminary dose- and time-dependent studies. At day 4 of culture, neonatal rat cardiomyocytes were divided into three groups: control, ET-1 (10nM) treated and estrogen pre-treatment (1 μM) ET-1 group. At 24-fold increase in cardiomyocyte surface area, and 1.3-fold in protein synthesis rate in cardiomyocyte were observed after ET-1 administration and these changes were greatly prevented by estrogen pre-treatment. Estrogen could also normalize the upregulated ET-1 and ETA receptor mRNA expression in ET-1-induced hypertrophied cardiomyocyte. The pure estrogen receptor (ER) blocker, ICI-182,780, failed to reverse the estrogen-mediated anti-hypertrophic effect on ET-1-induced hypertrophied cardiomyocytes suggesting the non-genomic pathway of estrogen action. Moreover, we recently found that ET-1-mediated over-expression of VEGF contributes to the development of ET-1-induced cardiomyocyte hypertrophy. Thus, subsequently the present study investigated whether VEGF system would contribute to the anti-hypertrophic action of estrogen in ET-1-induced hypertrophied cardiomyocyte. Interestingly, we found that the upregulated VEGF system in ET-1-induced hypertrophied cardiomyocyte was greatly normalized by estrogen pre-treatment. The present results implied that ET-1 might increase diabetic heart vulnerability post myocardial infarction through aggravating mitochondrial biogenesis impairment. Reducing circulating ET-1 level might be beneficial to protect diabetic heart from myocardial infarction by preserving mitochondrial biogenesis and function.

3.55 WITHDRAWN

3.56 ENDOTHELIN-1 (ET-1) REGULATES THE EXPRESSION OF MATRIX METALLOPROTEINASES (MMPS) AND TISSUE INHIBITORS OF MMPS IN HUMAN FIRST TRimestER TROPHOBLASTS VIA ETB RECEPTOR: A POSSIBLE ROLE IN TROPHOBLAST INVASION

Alejandro Majala-Martinez1, Philipp Velteky2, Jürgen Pöllheimer2, Martin Kröfler3, Gernot Desoye1, and Martina Dieber-Rotheder1

Introduction: Pre-eclampsia (PE) and fetal growth restriction (FGR) are severe pregnancy complications associated with an impairment of trophoblast invasion during the first trimester of pregnancy. This process is mediated by members of the matrix metalloproteinase family (MMPs) such as MMP-2, MMP-14 and MMP-15. Since ET-1 can regulate cell proliferation, migration and invasion and is upregulated in PE and FGR, we hypothesize that increased levels of ET-1 modify the expression of MMPs and their natural inhibitors (TIMPs) during the first trimester of pregnancy. Methods: Primary human trophoblasts isolated from first trimester placenta (week 7 to 12 of gestation) were incubated in the absence or the presence of 10nM and 100nM ET-1, MMP-2, -14 and -15 and TIMP mRNA levels were determined by RT-qPCR. MMP-2, -14 and -15 protein levels were assessed by zymography and Western blotting. ETR involvement was determined using two selective antagonists for ETAR (BQ-123) and ETBR (BQ-788). ET-1 functional effects were tested in first trimester chorionic villous explants. Results: ET-1 had a dose-dependent effect on MMP expression after 24h, with 100nM ET-1 down-regulating MMP-2 (24% and 17%), MMP-14 (21% and 25%) and MMP-15 (27% and 26%) mRNA and protein levels, respectively (p<0.05). ET-1 also up-regulated TIMP-3 (47%) and TIMP-4 (39%) mRNA levels in a dose-dependent manner (p<0.05). Blocking of ETAR increased ET-1 effect on MMP-15 down-regulation by 17% (p<0.001) whereas ETBR blockade partially abolished the ET-1 effect on MMP-15 expression. Preliminary data show that ET-1 also inhibits trophoblast outgrowth in placental explants by 33%. Conclusion: ET-1 alters the balance between invasion promoting MMPs and invasion inhibiting TIMPs in human first trimester trophoblasts, leading to a decrease in trophoblast invasion. This effect is mediated via ETBR and might contribute to the impairment of trophoblast invasion observed in PE and FGR.

3.57 PLASMA AND URINARY ENDOTHELIN-1 LEVELS IN NEONATES AND RENAL FUNCTION

Gwennolyn Patel1, Gospodin Stefanov1, Bhagya Puppala2, Lorene Schweig3, and Anil Gulati1

1Chicago Coll. of Pharmacy, Midwestern Univ., 555 31st St, Downers Grove, IL, 60515, 2Pediatrics, Advocate Children’s Hosp, Park Ridge, 1775 Dempster St, Park Ridge, IL, 60068.

Endothelin-1 (ET-1) is a vasoconstrictor implicated in hypoxia-induced lung and brain injury in neonates. Recent studies show increased urinary ET-1 (uET-1) excretion with renal dysfunction. Neonatal kidneys are vulnerable with 24% of newborns presenting with acute kidney injury (AKI). As uET-1 could be indicative of renal stress and a potential biomarker of AKI, we evaluated the correlation between plasma (pET-1) and uET-1 levels with parameters of renal function in neonates. 63 neonates were enrolled in 3 groups based on gestational age (GA); preterm (PT) ≤31 wk gestation, 31-37 wk and full-term (FT) ≥37 wk. 1.5ml cord blood and 1ml. birth asphyxia, urine at 24h of life, and lab sampled ET-1 levels were estimated using an ELISA kit. Mean uET-1 levels (pg/ml) of PT groups <1 wk (2.4±0.3) and 31-37 wk (1.4±0.4) were higher (p<0.05) than those of FT (0.7±0.2), uET-1 negatively correlated with GA (r=-0.4, p<0.01). No correlation was found between uET-1 and pET-1 levels and uET-1 with creatinine, BUN or urinary output. However uET-1 negatively correlated with glomerular filtration rate (GFR) (r=-0.3, p<0.05). Plasma and uET-1 levels are independent of each other and uET-1 excretion is reflective of intrinsic renal ET-1 production. uET-1 levels negatively correlated with GA and GFR. In neonatal population, uET-1 is not a marker for AKI or low birth weight. The study was funded by Advocate Children’s Hospital and Midwestern University and approved by respective Institutional Review Boards.

3.58 MATERNAL ETHANOL AND OXYCODONE EXPOSURE DELAY CNS DEVELOPMENT AS DETERMINED BY ENDOTHELIN RECEPTOR EXPRESSION IN NEONATAL RAT BRAINS

Mary Leonard1, Seema Briraj2, Muhammad Ansari3, Mary Leonard1, Seema Briyal1, Muhammad Ansari2, Muralidhara Devarapalli2, Lorene Schweig3, Bhagya Puppala2, and Anil Gulati1

1Chicago Coll. of Pharmacy, Midwestern Univ., 555 31st St, Downers Grove, IL, 60515, 2Pediatrics, Advocate Children’s Hosp, Park Ridge, 1775 Dempster St, Park Ridge, IL, 60068.

The incidence of combined opioid and alcohol abuse during pregnancy continues to rise, despite serious side effects to the fetus, such as reduced brain size and increased apoptosis. The ET system has been implicated in development of the CNS and may demonstrate changes in response to prenatatal alcohol and/or oxycodone exposure.
Pregnant rats were administered an oral gavage of vehicle, ethanol (EtOH), oxycodeone (OXY) or EtOH+OXY daily from gestational day 7 to 21. The brains of pups on post-natal day (PND) 1, 7, 14 and 28 were analyzed for expression of ET1, and ETA receptors. Pups in the EtOH, OXY and combination groups presented with more congenital malformations (5.7, 5.9 & 27.8%, respectively) at birth than vehicle. ET1 expression was significantly higher in the OXY (23.3%) and EtOH+OXY (80.5%) groups at PND 1 as compared to vehicle and EtOH alone. ETA receptor levels were significantly lower in all groups as compared to vehicle at PND 1 (EtOH:59.8%; OXY:65.0%; EtOH+OXY:57.3%). ET1 expression in vehicle pups decreased with CNS development (~35.3%) whereas expression increased in all other groups between PND 1 and 28 (EtOH=181.3%; OXY=1217.9%; EtOH+OXY=177.1%). Maternal EtOH and OXY exposure during pregnancy result in decreased levels of brain ETA receptors after birth, indicating a possible delay in CNS development. This project was supported by Advocate Children’s Hospital and Midwestern University. All procedures were approved by Midwestern University IACUC.

3.59 AUTOCRINE ENDOThELIN 1 SIGNALING PROMOTES OSTEoBLAST GROWTH AND MINERAL DEPOSITION VIA INDUCTION OF miR 126-3P.

Michael G. Johnson1,2, Jasmin Kristiano3, Xiaohua Wang2, Kathryn Konie1,2, Baozhi Yuan3, and Robert Blank4,5

Exoc, encoding endothelin (ET) converting enzyme 1 (EC1), is a positional candidate for a pleiotropic quantitative trait locus affecting femoral size, shape, mineralization, and biomechanical performance and is responsible for 40% of the variation in both bone biomechanical performance and recombinant cogenetic mouse strains HCB8 and HCB 23. To explore the mechanisms by which Exoc polymorphisms might affect bone phenotypes, we undertook in vitro studies of the ET axis in osteoblasts. When exposed to ascorbic acid and glycerol phosphate, cultured osteoblasts recapitulate maturation and mineralization over the course of 2 weeks. Treatment of TMOb osteoblasts with big ET1 increases mineralization and secretion of IGF1 while decreasing secretion of DKK1 and SOST, actions that can be blocked by pharmacologic inhibition of EC1 or EDNRA. To confirm that ET1 signaling is vital for normal bone physiology in the absence of ET1 supplementation, we pharmacologically inhibited EDNRA and ECE1 in TMOb osteoblasts. Inhibition of either ENDRA (BQ-123) or EC1 (phosphoramidon) reduced mineralization. Blockade of ENDRA showed the expected decrease in IGF1 secretion and increase in DKK1 and SOST secretion. We used Exel siRNA to knock down Exel. We confirmed knock down by western blot and saw similar results in mineralization, and decreased secretion of IGF1, and DKK1 and SOST. Big ET1 treatment increased expression of miR 126-3p approximately 120-fold relative to control. This miR is predicted to target ET1 release. We also cultured bone marrow derived Mφ (BMM) from both these mice and human monocytes in vitro. Finally, we examined BP and the ET system in patients receiving Mφ depletion and non-depleting immunotherapy. Results: Mφ depletion or loss of function-CD11b-DTR mice given DT and LysM+Mφ mice – were not associated with a difference in baseline BP or endothelial dysfunction. In both groups of mice administration of ET1 resulted in an exaggerated hypertensive response compared to controls. At a dose of ET1 1nmol/kg the maximal change in BP was ~2-fold greater and the overall BP response ~3-fold greater in Mφ deficient mice compared to control groups. In vitro, we show that BMM and human monocytes possess both ET1 and ETa receptors (ETa/ET1) whereas stimulation of mouse and human Mφ with exogenous ET1 did not polarize Mφ to a classical or alternative phenotype, both displayed chemo-kinesis to ET1. This was reduced by selective ETa (BQ788) and completely blocked by ETa (BQ788) receptor antagonism. BMDM stimulation with LPS/INFγ (but not IL4-IL15) led to an increase in the concentration of ET1 in their media at 24h, an effect that was blocked by phosphoramidon, an inhibitor of endothelin converting enzyme. Importantly, using pharmacological and gene targeting studies we show a novel immune mechanism for ET1 through ETa receptor mediated dynamin-dependent endocytosis present in both murine and human Mφ. Finally, in patients receiving Mφ depletion immunotherapy we show that BP is higher and the ET system more activated than in those receiving non-depleting therapies. Conclusions: Overall, these data suggest that ETa and ET1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension. Funded by a British Heart Foundation Intermediate Clinical Res. Fellowship (FS13/302994).

3.60 FUNCTIONAL SIGNIFICANCE OF ENDOThELIN IN PERIODONTITIS

Inuk Chang1, Gu-Yeon Seo1, Sue Young Oh1, and Dong Min Shin1,2

Periodontitis is a very common oral inflammatory disease and results in the destruction of supporting connective and osseous tissues of tooth. Although the etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets has been thought as one of the major etiologic agent. It has been known that endothelin-1 (ET1) is involved in the occurrence and progress of various inflammatory process and diseases. Expression of ET1 and its receptors, ETa, and ETI is detected in the periodontal tissues and the ET1 levels in gingival crevicular fluid are increased in the periodontitis patients. However, functional roles of endothelin in periodontitis are still unclear. In this study, we explored cellular and molecular mechanisms of ET1-1 actions in periodontitis using human gingival epithelial cells (hGECs) and human gingival fibroblasts (hGFs). ET1-1 and ETa, but not ETb were abundantly expressed in both hGECs and hGFs. Stimulation of hGECs with P. gingivalis LPS increased the expression of ET1-1 and ETa suggesting the activation of endothelin signaling pathway. Production of pro-inflammatory cytokines, IL-1β, IL-6, and IL-8 was significantly enhanced by exogenous ET1-1 treatment in both hGECs and hGFs. Moreover, ET1-1 augmented the number of multinucleated osteoclasts implicating the acceleration of alveolar bone loss. Together, our study showed that activation of ET1-1/ETa signaling pathway by P. gingivalis may exacerbate periodontitis by stimulating production of pro-inflammatory cytokines in hGECs and hGFs and provoking the alveolar bone loss through the ET1-1 mediated osteoclastogenesis at the same time. To directly examine the endothelin antagonism as a potential therapeutic approach for periodontitis, bosentan treatment will be applied to the ligature-induced mouse periodontitis model. Infiltration of immune cells, production of pro-inflammatory cytokines, and alveolar bone loss will be evaluated.

3.61 MACROPHAGE ENDOThELIN-B RECEPTORS CLEAR ENDOThELIN-1 & REGULATE BLOOD PRESSURE

Noushin Duaee1, Rebecca Moorthese2, Les Gaye2, Alajna Cooper2, Olivia Leguer2, Veronique Baudrie2, David Webb2, Matthew Bailey2, Pierre-Louis Tharaux2, and David Kuhl3

Introduction: Hypertension is common. However, its cause remains unclear in the majority of those affected. Recent data suggest that macrophages (Mφ)monocytes contribute to, and protect from, hypertension. Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor with additional pro-inflammatory properties. However, the effects of ET-1 on Mφ biology are not well studied. Methods: To examine the interactions between the ET and Mφ systems we administered incremental doses of intravenous ET-1 to CD11b-diphtheria toxin receptor (DTR) mice given diphtheria toxin (DT); to deplete Mφ/monocytes) and to mice lacking ETa receptors solely on myeloid cells (LysMfltMφ). We also cultured bone marrow derived Mφ (BMM) from both these mice and human monocytes in vitro. Finally, we examined BP and the ET system in patients receiving Mφ depleting and non-depleting immunotherapy. Results: Mφ depletion or loss of function-CD11b-DTR mice given DT and LysMfltMφ – were not associated with a difference in baseline BP or endothelial dysfunction. In both groups of mice administration of ET1 resulted in an exaggerated hypertensive response compared to controls. At a dose of ET1 1nmol/kg the maximal change in BP was ~2-fold greater and the overall BP response ~3-fold greater in Mφ deficient mice compared to control groups. In vitro, we show that BMM and human monocytes possess both ET1 and ETa receptors (ETa/ET1). Whereas stimulation of mouse and human Mφ with exogenous ET1 did not polarize Mφ to a classical or alternative phenotype, both displayed chemo-kinesis to ET1. This was reduced by selective ETa (BQ223) and completely blocked by ETa (BQ788) receptor antagonism. BMM stimulation with LPS/INFγ (but not IL4-IL15) led to an increase in the concentration of ET1 in their media at 24h, an effect that was blocked by phosphoramidon, an inhibitor of endothelin converting enzyme. Importantly, using pharmacological and gene targeting studies we show a novel immune mechanism for ET1 through ETa receptor mediated dynamin-dependent endocytosis present in both murine and human Mφ. Finally, in patients receiving Mφ depleting immunotherapy we show that BP is higher and the ET system more activated than in those receiving non-depleting therapies. Conclusions: Overall, these data suggest that Mφ and ET1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension. Funded by a British Heart Foundation Intermediate Clinical Res. Fellowship (FS13/302994).
marker of renal injury until 34 weeks of age at which time the mice were euthanized and the kidneys were harvested. Consistent with previous studies, 46% of mice (n=14) fed standard diet developed albuminuria during the course of the study. In contrast, only 6% of mice fed high salt developed albuminuria (n=17, p<0.02), suggesting a paradoxical renal protection. To provide mechanistic insight, inflammatory markers were assessed by qRT-PCR. Renal interleukin-2 (IL-2), a cytokine associated with T cell differentiation and with activation of the endothelin system, was significantly lower in high salt fed animals (0.26±0.14 relative to normal chow fed mice, p=0.05, n=4). Moreover, renal endothelin type A receptor protein expression was lower in high salt fed mice (0.61±0.14 vs. 1.0±0.21, p=0.05, n=6). These data suggest that, contrary to the original hypothesis, a long-term high salt diet may protect against the renal injury associated with SLE, possibly through down-regulation of renal inflammation and associated activation of the endothelin system.

3.63 RELATIONSHIP OF ENDOTHELIN-1 AND NLRP3 ACTIVATION IN HT22 HIPPOCAMPAL CELLS: RELEVANCE TO COGNITIVE DECLINE IN DIABETES
Rebecca Ward1, and Adviser Fayal2
1Physiology, Georgia Regents Univ., 1120 15th St, Augusta, GA, 30912. Diabetes increases and worsens the progression of cognitive decline. Decreased cerebrovascular remodeling is believed to precede the negative changes observed in diabetes-induced cognitive dysfunction. Diabetic rats treated with bosentan, an ETA- and ET-B antagonist, has been shown to improve hippocampal massacred neurogenesis. We have shown here that bosentan receptor antagonists restore vascular function and remodeling caused by diabetes. Inflammation NLRP3 has been implicated in vascular complications of diabetes. The aim of the study was to elucidate the relationship between ET-1 and NLRP3-induced inflammation in hippocampal neurons in diabetes. An in vitro model was employed by exposing HT22 hippocampal neurons to regular control medium (C, 25 mM glucose) with and without palmitate (Pal, 200 μM) in the presence and absence of 10 μM bosentan for 24 hours. To mimic low nutrient state that occurs with vascular dysfunction, additional cells were grown in low glucose (LG, 5.5 mM). NLRP3 activity was measured by western blotting for ACS, cryopyrin and caspase-1. ET-1 and IL-1β in the media and cell lysate, respectively, was determined by ELISA. Palmitate decreased expression of ET-1 in neurons treated with and without bosentan (p<0.01). ET-1 was decreased in LG conditions after bosentan treatment (p<0.001). Bosentan and palmitate reduced expression of ASC (p<0.05), whereas expression was higher in LG treated cells with recovery bosentan treated neurons (p<0.05). Caspase-1 was decreased in neurons treated with both bosentan and palmitate (p<0.05). Cryopyrin and IL-1β expression was increased in all but C+Pal condition when treated with bosentan (p<0.05). Low nutrient conditions stimulate inflammatory and ET-1 expression in neurons, which could account for neuronal dysfunction observed in diabetes. Understanding the relationship between endothelin and inflammation in the hippocampus could provide therapeutic targets in diabetes and cognitive decline.

3.64 CENTRAL ENDOGENOUS ENDOTHELINS (ETS) ARE INVOLVED IN THE DOCA-SALT HYPERTENSION. INTERACTIONS BETWEEN ETS RECEPTOR A (ETA) BLOCKADE AND TYROSINE HYDROXYLASE (TH) IN THE ANTERIOR (AH) AND POSTERIOR HYPOTHALAMUS (PH)
Maria Gulli1, Vanina Morales2, Luis Casamitjana3, Carla Alvarez1, Liliana Bianchetti1, and Marcelo Vatta1
1Dept. of Physiology, IQUIMEFA-UBA-CONICET, Sch. of Pharmacy & Biochemistry, Univ. of Buenos Aires, Junín 956, 7th Fl, Physiology, Ciudad Autonoma de Buenos Aires, 1113, Argentina. 2Dept. of Pathophysiology, INICEM-UBA-CONICET, Sch. of Pharmacy & Biochemistry, Univ. of Buenos Aires, Junín 956, 5th Fl, Pathophysiology, Ciudad Autonoma de Buenos Aires, 1113, Argentina. In previous studies we have reported that the exogenous administration of ETS modified norepinephrine transmission in PH and AH of DOCA-salt hypertensive rats. Therefore in the present work we sought to establish the role of ETA receptor stimulation by endogenous ETs and its correlation with TH activity and expression in the AH and PH of DOCA-salt hypertensive rats. Normotensive and DOCA-salt hypertensive Sprague-Dawley male rats were prepared with a guide cannula placed in the basal hypothalamic ventricle for the administration of artificial cerebrospinal fluid (CSFα) or BQ610 (ETA receptor antagonist). Following a recovery period of seven days, both groups were randomly sub-divided and icv administered with 1ul CSFα or 1ul BQ610 (20nm). BP was monitored for 60 min through a catheter placed in the femoral artery. Brain was then removed and the AH and PH dissected. The expression of TH and its phosphorylated forms were determined by immunoblotting and TH activity by a radioenzymatic assay. Results showed that BQ610 markedly reduced blood pressure in both normotensive and hypertensive animals, although a more prominent decrease was observed in systolic BP of DOCA-salt hypertensive rats (30 mmHg decrease following 30 min ETA exposure). No changes in TH expression or activity was observed in the PH and AH of normotensive rats either injected with vehicle or BQ610, or in the AH of DOCA-salt hypertensive rats. However, hypertensive rats injected with BQ610 showed reduced TH phosphorylation at 40Ser and 19Ser sites (55.6% and 33.3%, respectively). Moreover, a Pearson correlation index showed that the amount of TH and TH-Pser40 expressed in this region correlated with SBP values (p<0.05). These results were in accordance with increased ETA expression (129% p<0.05) found in the HP of DOCA-salt rats. Present findings shows that ETA receptor blockade reduces catecholamine activity in the PH of DOCA-salt hypertensive rats. Given that the PH is a well-characterized sympathetic-excitatory area intimately involved in the regulation of cardiovascular activity, it allows us to conclude that brain ETs through ETA receptor activation strongly contribute to blood pressure elevation in DOCA-salt hypertension. These findings further support the relevance of the central endothelial system in a salt dependant hypertensive model such as DOCA-salt rats. Funding: ANPCYT, CONICET and UBA.

3.65 THE ENDOTHELIN SYSTEM IN AMYOTROPHIC LATERAL SCLEROSIS (ALS)
Lyle Ostrow1, Kathryn Russell1, Sveta Valipovs1, Christopher Donnelly2, Jared John- son1, Bryan Traynor3, and Jeffrey Rothstein2
1Neurology, Johns Hopkins Univ. Sch. of Med., Rangos Bldg., Rm. 245, 855 N. Wolfe St., Baltimore, MD, 21205, ’Brain Sci. Inst., Johns Hopkins Univ. Sch. of Med., Rangos Bldg., Rm. 270, 855 N. Wolfe St., Baltimore, MD, 21205. Department of Neurology, Johns Hopkins Hospital, 1830 Orleans St., Baltimore, MD 21287. 2Dept. of Pathology, Univ. of Pennsylvania, Philadelphia, PA, 19104. 3Lab. of Neuropathology, Natl. Inst. on Aging, NIH, 35 Convent Dr., Rm. 1A-213, Bethesda, MD 20892-2170.

Objective: ET-1 exerts negative effects on several pathways implicated in ALS pathogenesis, including glutamate transporter expression, heightened sensitivity to hypoxic stress, matrix metalloproteinase and growth factor expression, and oligoden- doctye development. These experiments examine whether ET-1 and ETB receptor expression are altered in disease-relevant CNS regions and cell types in (1) ALS patient tissues, (2) patient-derived cell cultures, and (3) a well-characterized mouse model of ALS. Methods: We used Nanostar RNA counts, ELISA, Western blot, and immunohistochemistry (IHC) to examine ET-1 and ETB receptor expression in postmortem CNS tissue samples from ALS patients and controls, ALS patient-derived fibroblast cultures, and SOD1-G93A ALS mice. We also surveyed an exome sequencing dataset comprised of 247 familial ALS (FALS) cases for variants in ET-system genes. Results: ET-1 (EDN1) gene RNA and protein levels are increased in motor cortex from ALS patients compared to controls (P<0.05), and in ALS motor cortex compared to cerebellum from the same patients (P<0.01). IHC suggests ET-1 expression is increased in astrocytes in ALS motor cortex compared to both ALS occipital cortex and healthy control motor cortex. ET-B receptor staining is strikingly increased in motor neurons of ALS motor cortex compared to both other cortical regions and healthy control motor cortex. EDN1 RNA expression was significantly higher in motor cortex from ALS patients who possess the C9072T pathogenic ALS mutation compared to C9-negative cases. Fibroblasts cultured from C9+ vs. C9- ALS patients showed divergent ETB and ET-1 expression, and ET-1 ELISA of conditioned media samples readily distinguished the C9+ ALS cases. Endstage ALS mice had increased ET-1 protein in thoracic spinal cord compared to presymptomatic mice (p<0.01) and symptom onset (p<0.05) time points. In the exome analysis, 4% (10/247) of FALS patients had variants in ET-system genes that altered the coding sequence and were novel (ie not seen in ~7,000 controls). Six of these cases specifically had novel coding variants in FCE2, ie 2.5% of total FALS cases. Inter- estingly, FCE2 shares many functions with MMP-9, recently demonstrated to be characteristically upregulated in vulnerable motor neurons in ALS. Conclusions: These experiments demonstrate striking abnormalities in the CNS endothelin system in ALS patient tissue samples, patient-derived cell cultures, and ALS mice. There is upregulation of ET-1 expression by astrocytes and ET-B receptors on motor neurons in disease relevant CNS regions. The mounting data connecting the ET system to many pathways currently under investigation in ALS combined with the potent auto- nomic and paracrine effects of ET-1 in the CNS suggest that the endothelin system may represent a largely unexplored and potentially significant target for therapeutic intervention in ALS.

3.66 SIGNIFICANT CONTRIBUTION OF THE MAST CELL- DERIVED CHYMASE, MMCP-4, IN EARLY PHASES OF MULTIPLE SCLEROSIS IN MICE
Louis Desbiens1, Catherine Lapointe1, Denis Génie3, and Pedro D’Orléans-Juste1
1Dept. of Pharmacology, Univ. de Sherbrooke, 3001, 12e Ave. Nord, Sherbrooke, QC, J1H 5N4, Canada, 2Dept. of Pediatrics, Univ. de Sherbrooke, 3001, 12e Ave. Nord, Sherbrooke, QC, J1H 5N4, Canada. Multiple sclerosis (MS) is the most frequent neurodegenerative disease that affects humans between 20 and 45 years of age. To date, treatments only reduce symptoms related to spinal demyelination but do not reverse neurologic damage associated with MS. It has been suggested that MS has a vascular component associated with lym-
phocytes and mast cells infiltration (Wong et al., Neurology, 2012). In addition, ET-1 plasma levels are elevated in MS patients (Hausfchild et al., J. Neuroophthalmol., 2001). Recently, our laboratory has reported that mast cell derived-chemokine generates ET-1 in the mouse in vitro and in vivo (Houde et al., J. Pharmacol Exp Ther, 2013; Serra et al., Biochem Pharmacol, 2015). Our principal aim was to assess the roles of a murine isoform of ET-1 producing, namely mMCP-4, in the development of a murine model of experimental autoimmune encephalomyelitis (EAE). In the present study, we therefore evaluated, on a scale of 0 to 5, ascending paralysis in WT and mMCP-4 KO mice subjected to EAE. We also monitored ET-1 brain levels by ELISA, at various times following EAE induction or in healthy WT and mMCP-4 KO mice. When compared to WT littermates, mMCP-4 KO mice show a marked delay in onset and severity of EAE (p < 0.05). Furthermore, WT mice with induced EAE show a 3 fold increased level of ET-1 brain levels one week after inoculation of EAE when compared to healthy mice (p < 0.01). No such increases were observed in mMCP-4 KO mice induced by EAE. Basal brain levels of ET-1 were not different in naive WT or mMCP-4 KO mice. These results suggest that genetic repression of mMCP-4 improves neuromotor disabilities in a mouse model of MS. Also, ET-1 in the CNS before the appearance of the first symptoms of EAE in mice. Could be a marker of early phase of the disease due to the elevation of the level of this peptide in the CNS before the appearance of the first symptoms of EAE in mice.

The role of the NER pathway is to repair ultraviolet-induced DNA damage. Individuals lacking any of the Xeroderma Pigmentosum (XP) genes, which code for essential proteins of the NER pathway, are unable to successfully repair DNA damage caused by sunlight exposure. As a result, XP patients, however, do not develop melanomas upon UVR. The aim of this study was to develop a UV-induced melanoma mouse model with overexpression of the Edn3 pathway in conjunction with a targeted Χρα mutation. Three populations of transgenic mice were created with overexpression under the control of the keratin 5 promoter (K5-Edn3) and mutations in the Χρα gene (Χρα/+, K5-Edn3, Χρα/-, K5-Edn3, Χρα/-; K5-Edn3 were exposed to a single suberythemal neonatal dose of UVR at 3.5 days of age, two doses of UVR (at 3.5 days and 6 weeks of age), or a single dose of UVR at 6 weeks of age. Histomorphology and immunostaining results confirmed the melanocytic origin of primary skin tumors and metastases. Melanomas were only found in transgenic K5-Edn3 mice. A single suberythemal neonatal UVR dose at 3.5 days of age resulted in increased panniculitis and decreased latency in Χρα/+, K5-Edn3 mice (60%, n=10) when compared to Χρα/-; K5-Edn3 (46%, n=13) and Χρα/+, K5-Edn3 (19%, n=16). Animals exposed to two UVR doses did not reveal significant differences between Χρα null, heterozygous, or wild type; animals exposed to one dose of UVR at 6 weeks of age did not develop any melanomas. These results suggest that normal UVR exposure along with over-expression of the Edn3 pathway is sufficient for melanogenesis in mice, and is enhanced by NER deficiency.

3.67 NOVEL UVR-INDUCED MELANOMA MOUSE MODEL BASED ON ENDOTHELIN 3 OVEREXPRESS IN CONJUNCTION WITH DEFICIENCY OF THE NUCLEOTIDE EXCISION REPAIR PATHWAY

Diana Cardero1, Ana Paula Benaduce2, Deannys Botista1, Gabriel Griti1, Karen Jorge1, Clara Milikowski1, and Lidia Keo1

1Biological Sci., Florida Intl. Univ., 11200 SW 8th St., Miami, FL, 33199; 2Pathology, Univ. of Miami, 1400 NW 12th Ave., Miami, FL, 33125.

Melanoma is the most aggressive type of skin cancer due to its high propensity to metastasize. Melanogenesis is influenced by both genetic and environmental factors. Ultraviolet Radiation (UVR) exposure is widely accepted as the most important environmental factor leading to melanogenesis. The development of melanocyte precursor cells is highly dependent on the Endothelin 3 (Edn3) pathway. In humans, this pathway has also been associated with melanoma progression and its high potential to metastasize. Congenital disorders that result in a disruption of the nucleotide excision repair (NER) pathway are some of many genetic factors that increase susceptibility to melanomas, as well as other skin cancers. The role of the NER pathway is to repair ultraviolet-induced DNA damage. Individuals lacking any of the Xeroderma Pigmentosum (XP) genes, which code for essential proteins of the NER pathway, are unable to successfully repair DNA damage caused by sunlight exposure. As a result, XP patients, however, do not develop melanomas upon UVR. The aim of this study was to develop a UV-induced melanoma mouse model with overexpression of the Edn3 pathway in conjunction with a targeted Χρα mutation. Three populations of transgenic mice were created with overexpression under the control of the keratin 5 promoter (K5-Edn3) and mutations in the Χρα gene (Χρα/+, K5-Edn3, Χρα/-, K5-Edn3, Χρα/-; K5-Edn3 were exposed to a single suberythemal neonatal dose of UVR at 3.5 days of age, two doses of UVR (at 3.5 days and 6 weeks of age), or a single dose of UVR at 6 weeks of age. Histomorphology and immunostaining results confirmed the melanocytic origin of primary skin tumors and metastases. Melanomas were only found in transgenic K5-Edn3 mice. A single suberythemal neonatal UVR dose at 3.5 days of age resulted in increased panniculitis and decreased latency in Χρα/+, K5-Edn3 mice (60%, n=10) when compared to Χρα/-; K5-Edn3 (46%, n=13) and Χρα/+, K5-Edn3 (19%, n=16). Animals exposed to two UVR doses did not reveal significant differences between Χρα null, heterozygous, or wild type; animals exposed to one dose of UVR at 6 weeks of age did not develop any melanomas. These results suggest that normal UVR exposure along with over-expression of the Edn3 pathway is sufficient for melanogenesis in mice, and is enhanced by NER deficiency.

3.68 ENDOTHELIN 3 REGULATES PIGMENT PRODUCTION AND COAT COLOR IN MICE

Javier Pino1, Shosuke Ito2, Kazumasa Wakamatsu2, and Lidia Keo1

Skin and hair pigmentation plays an essential protective role against damages caused by UV irradiation. Humans with fair skin and light hair have a higher susceptibility to developing various skin cancers, including melanoma. The production of pigment involves several signaling molecules essential for the proper development and function of melanocytes, the pigment producing cells of the skin. α-Melanocyte Stimulating Hormone (α-MSH) regulates the production of both eumelanin (black/brown) and phaeomelanin (yellow/red), while Endothelin 3 (Edn3) is required during melanocyte development. Lethal yellow mice (Ay) have a non-functional α-MSH pathway leading to a decrease in production of phaeomelanin in the hair. Dorsocyclicin (dcx) inducible transgenic mice that express Edn3 under the Keratin 5 promoter (K5-Edn3)showed hyper-pigmentation of the skin and coat. Transgenic Edn3 darkened the coat color of Ay mice. The goal of this study is to understand the role of Edn3 in pigment production. To test if continuous transgenic Edn3 expression is required to maintain a dark coat color, we genotyped ET-1 expression significantly increased both pigment types in Ay mice. The number of melanocytes in hair follicles of Edn3 transgenic mice as evidenced by immunofluorescence with an antibody against tyrosinase related protein 1 was similar to that of non-transgenic littermates. This indicates that the observed increase in melanin content in hairs of Edn3 transgenic mice was not due to the presence of more melanocytes. Our results indicate that the pancreatic expression of Edn3 from keratinocytes is capable of generating and maintaining a dark coat color in the absence of a functional α-MSH pathway. A better understanding of the pathways that regulate the process of pigment production can help in the development of more effective therapies for skin cancers and pigmentation disorders in humans. J. P. was supported by NIH/NIGMS R25 GM061347. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
significantly increased latency to morphine (P<0.05) and oxycodone (P<0.05) but had no impact on latency to tramadol. **Conclusions:** BMS182874 differentially potentiates opioid analgesia, increasing morphine and oxycodone analgesia while having no impact on tramadol analgesia in mice. Morphine and oxycodone are considered low efficacy opioids with significantly different efficacy compared to tramadol, and potentiation may be dependent upon relative efficacy of the opioid. Opioids with a wide range of relative efficacies need to be tested in animals pretreated with BMS182874 to determine any correlation. Most clinically useful opioids produce their effects via μ-opioid receptor agonists. Different opioid agonists may act on the same receptor but yet produce distinct unique downstream events. This functional selectivity of various opioids may determine the nature and extent of opioid-endothelin interaction and could be important in the differential potentiation of opioid analgesia by BMS182874. Funds for this work were provided by Midwestern University.

3.71 GENDER COMPARISON OF RECOVERY FROM INTRA-VEOUS AND INHALATIONAL ANAESTHETICS AMONG ADULT PATIENTS IN SOUTH-WEST NIGERIA

Yewande Okunoren-Oyekenu1,2,3, Arinola Sanusi4, and Grace Gbotohosa1

1Cell Physiology & Pharmacology, Univ. of Leicester, Maurice Shacklidge Bldg., Leicester, LE1 9HN, UK; 2Trauma, Brain Repair, Anaesthesia & Pain Management, Wendy Noren Med. Res. Inst., Ondo State Trauma & Surgical Ctr., Ondo State, Nigeria; 3Pharmacology & Therapeutics, Univ. of Ibadan, Ibadan, Oyo State, Nigeria; 4Anaesthesia, Univ. of Ibadan, Ibadan, Oyo State, Nigeria.

Gender is a known factor in recovery from general anaesthetics. This study reports such a difference in South-West Nigerian patients, and proposes gender-based differences in pharmacokinetic profiles as explanation. Two main strata (20 males and 20 females) were considered, and written informed consents were obtained for both strata. Intravenous general anaesthesia was induced with propofol or thiopental and maintained with inhalational agent halothane or isoflurane. Patient plasma samples were analyzed with high performance liquid chromatography (HPLC), for anaesthetic agents before induction; at 10, 30, 60, 180 mins after induction of anaesthesia, and at recovery. The Elimation Half Life, Mean Residence Time, and Clearance measured in propofol patients maintained on halothane or isoflurane were 310.7 ± 138.4 min, 459.2 ± 199.4 min and 431.1 ± 154.1 min, respectively for females versus 503.0 ± 312.2 min, 752.8 ± 448.3 min and 290.0 ± 157.8 min for males. The corresponding values with thiopental induction were 148.0 ± 112.7 min, 220.9 ± 180.3 min and 544.6 ± 500.1 min for females versus 76.8 ± 28.7 min, 115.4 ± 35.4 min and 533.7 ± 50.2 min for males. Data was significantly different (p<0.05) across gender. Gender differences in recovery from anaesthetic agents in Southwest Nigerian patients is due to differences in pharmacokinetic profiles. Anaesthesia, Recovery time, HPLC, Pharmacokinetics. **Grant Funding Source:** Self-Funded Research Student supported by Supervisors. Full Article to be published in the British Journal of Clinical Pharmacology.

3.72 REVERSAL OF NALOXONE-PRECIPITATED OPIOID WITHDRAWAL IN MICE BY ENDOTHELIN ETA RECEPTOR ANTAGONISTS

Shafailib Bhalia1,2, Gowdenby Pikes1, and Amil Galal1,2

1Pharmaceutical Sci., Midwestern Univ., 555 31st St., Downers Grove, IL, 60515. **Statement of Purpose:** A major limitation of chronic use of opioid analgesics is their uncontrolled opioid analgesia and reverse antinociceptive tolerance in mice and rats. It is also known that β-arrestin 2 regulates opioid receptors and is involved in opioid tolerance. The present study was designed to investigate the involvement of central endothelin (ET) and β-arrestin 2 mechanisms in opioid withdrawal. The effect of intracerebroventricular (i.c.v.) administration of ET, receptor antagonist, BQ123, on morphine and oxycodone withdrawal was determined in male Swiss Webster mice. Methods and Materials: Opioid tolerance was induced by twice-daily injections of morphine for three days, and once-daily injections of oxycodone for five days. Withdrawal was precipitated by opioid receptor antagonist, naloxone, on day 4 and day 6 in morphine and oxycodone studies, respectively. Behavioral signs and symptoms of withdrawal were observed for 15-min post-naloxone injection. Expression of ET, receptors, ET, receptors, vascular endothelial growth factor (VEGF), norve growth factor (NGF), and β-arrestin 2 was determined in the brain using western blot analysis. Data and Results: BQ123 reversed hypoactivity in mice following morphine and oxycodone withdrawal. Loss of body weight induced during withdrawal was also blocked by BQ123. Further, BQ123 attenuated number of wet shakes, rearing behavior and jumping behavior following opioid withdrawal. Western blot analysis indicated decrease in expression of VEGF, ETα, and ETβ receptors following administration of vehicle or BQ123 in mice undergoing morphine and oxycodone withdrawal. Brain NGF expression was not affected in morphine withdrawal but was significantly decreased in oxycodone withdrawal. This change in NGF expression was not altered by BQ123. No change in expression of β-arrestin 2 was observed following opioid withdrawal in the presence or absence of BQ123. **Conclusion and Significance:** These studies demonstrate that ETα receptor antagonists mitigate withdrawal symptoms of morphine and oxycodone. The mechanism involved in attenuating opioid withdrawal appears to be different for morphine and oxycodone, because brain NGF expression decreased only with oxycodone and not with morphine. It appears that β-arrestin 2 is not involved in attenuation of morphine and oxycodone withdrawal by BQ123. This study was funded by Midwestern University Chicago College of Pharmacy and College of Health Sciences.

3.73 DEVELOPMENT AND VALIDATION OF A REVERSED-PHASE HPLC METHOD FOR THE ANALYSIS OF ENDOTHELIN-B RECEPTOR ANTAGONIST, IRL-1620

Manish Lavhale1, E. Iyesan Kumur1, and Amil Galal1

1Pharmazz Res. Ctr., Pharmazz India Private Ltd., H-6, Site-C, Surajpur Ind. Area, Greater Noida, India; 2Chicago Coll. of Pharmacy, Midwestern Univ., 555 31st St., Downers Grove, IL, 60515. Endothelin-B (ETβ) receptors in the brain are being identified as vital in the development of CNS and have demonstrated potential application in the management of cerebral ischemia, Alzheimer’s disease and other CNS disorders. Attempts are being made for the clinical development of ETβ receptor antagonist, IRL-1620, in the management of cerebral ischemia. We have therefore embarked on validation of analytical method for the analysis of IRL-1620. A reverse phase HPLC method was developed and validated in terms of specificity, linearity, limit of detection (LOD), precision, accuracy, robustness and ruggedness. Chromatographic separation of IRL-1620 was achieved on C8 column by isocratic elution. The mobile phase consisted of trifluoroacetic acid and acetonitrile in water and the quantitative assistance were performed at 215 nm. The method was specific, accurate and acceptable and respectively applied for quantitative analysis of IRL-1620 in human plasma and finished products of IRL-1620.

Heonna Okoli1, and Osomara Udama2

The investigation hypothesized the hypoglycemic effect of the fresh fruits extracts of Gongronema latifolia in both normoglycemic- and alloxan-induced glyceremic animals. All were broken into small pieces. The extracts from the comminuted fruits were filtered through soxhlet extraction with a methylene chloride/methanol (1:1) system. Acute toxicity testing was done according to the method of Lorke (1983) using albino mice. Physiological screening was done according to standard methods. Diabetes was induced with alloxan monohydrate in groups of the rats. The rats were divided into groups of five animals each and fasted for 15 hours with free access to drinking water. For the normoglycemic animals, group 1 received 100 mg/kg of distilled water; group 2- 50mg/kg of extract; group 3- 100mg/kg of extract; group 4- 5mg/kg of glibenclamide; and group 5- 50mg/kg of extract plus 5mg/kg of glibenclamide. Blood samples were drawn by tail milking at 0 hr, 30 min, 1hr, 2hrs, and 4 hrs, respectively and blood glucose concentration was determined using the glucose meter. The acute toxicity results indicate that the extracts of the fresh fruits are safe for human consumption. The physiological results show, for the fresh fruits extract flavonoids, starch and carbohydrates were absent; glycogenides, resins and tannins were present in trace quantities; fats and oils were present in moderate quantities; alkaloids and saponins were present in large amounts; terpenoids, proteins, and steroids were present in very large quantities. Biochemical tests showed for the fresh fruits extracts to have significant (p < 0.05) dose-dependent hypoglycemic activity though in each case less than that of 5 mg/kg glibenclamide, in both normoglycemic and alloxan-induced hyperglycemic rats. However, in each case, the co-administration of extract at 50 mg/kg and glibenclamide 5 mg/kg gave significantly (p < 0.05) increased hypoglycemic activity. In conclusion, the shade-dried fruits extract have more effect in reducing blood glucose.
of ETA and ETB signaling to age-related dysfunction of cerebral arteriole myogenic tone. Our objectives were to examine: 1) The ETA and ETB physically interact and this dimerization may potentially affect the system (ES) contributes to regulation of myogenic tone and is comprised of two G-Cerebral arterioles intrinsically maintain constant tissue perfusion despite variations in vascular resistance in pulmonary arterial hypertension (PAH), which ultimately causes death by right ventricular (RV) heart failure. ET receptors are upregulated in the RV in PAH but the beneficial effects of ET-1 as a positive inotropic agent are blocked by current therapies using ET receptor antagonists. The apelin peptides acting via a single G-protein coupled receptor have emerged as key physiological regulators in the cardiovascular system. In human hearts, [Pyr-1]apelin-13 (apelin) is the most potent inotropic agonist discovered to date and the peptide also causes vasodilation in humans and animals in vivo and opposes the vasoconstrictor actions of ET-1 in human vessels in vitro. The peptide is downregulated in PAH and we hypothesise that apelin may attenuate the development of PAH with the monoclonal antibody (MCT) rat model. We have recently developed a synthetic apelin agonist MM07, biased towards the beneficial G-protein actions but with reduced recruitment of beta-arrestin and internalization, avoiding detrimental effects of GPCR agonists in desensitising and silencing the receptor. Methods: Sprague Dawley rats were randomly assigned to one of the following groups (n=8, mean body weight 186+2 g). 1. A single subcutaneous dose of MCT (60 mg/kg) was followed with vehicle injections for 21 days. 2. MCT (60 mg/kg) followed by daily ip injections of MM07 (1mg/kg for 21 days). 3. Vehicle ip (1mg/kg for 21 days). 4. Control vehicle ip for 21 days. Animals were imaged using in vivo magnetic resonance (MR) imaging before and at the end of the experiment. right ventricular systolic pressure was measured using a catheter under anaesthesia. Animal experiments were performed according to local ethics committee and Home Office (UK) guidelines under the 1986 Scientific Procedures Act. Results: MR imaging in vivo in transverse and longitudinal sections of rat heart showed that MCT resulted in the enlargement of the right ventricle compared with the control and this was attenuated by MM07. There was no effect of MCT on arterial wall thickness. The Fulton index (wet wt of right ventricle (RV) divided left ventricle & septum) was significantly increased in MCT rats compared with control, but this increase was significantly attenuated by MM07 (One way ANOVA, Tukey’s multiple comparison test, p<0.001). Similar results were obtained for right ventricular systolic pressure as a surrogate of pulmonary arterial pressure. Conclusions. The results show a biased apelin agonist attenuates the increase in right ventricular hypertrophy and systolic pressure. These results suggest apelin agonists could be used in combination with ET antagonists to reduce remodeling and improve cardiac output. 1. Kuc RE et al (2014). Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension. Life Sci 118, 391-396. 2. Maguire JJ et al (2009) [Pyr-1]apelin-13 identified as the predominant agonist in neonatal rat cardiomyocytes suggesting the non-genomic pathway of estrogen mediated cardiac anti-hypertrophic action. 3. Brame et al. (2015). Design, characterization and functional characterization of a biased apelin agonist attenuates the increase in right ventricular hypertrophy and apoptosis by different research groups in recent days. Thus, although the anti-hypertrophic action of estrogen in heart has begun to be appreciated, the potential mechanism underlying the estrogen-mediated cardioprotection is unknown. Endothelin (ET)-1, a potent vasoconstrictor, induces hypertrophic changes in neonatal rat cardiomyocytes were observed after ET-1 administration and this dimerization affects the pharmacology of the ES and whether the changes we observed in aged cerebral vessels are the result of altered gene expression, deterioration of endothelial cell function, or changes in receptor coupling. Our results suggest that interactions between endothelin receptors may have consequences during aging and disease states, in which alterations in the expression and/or signaling of ETA and ETB receptors may occur. This research was supported by the Natural Sciences and Engineering Research Council of Canada grant NSERC-43526 and by the Nova Scotia Graduate Scholarship.
Chronic Hypoxia in Endothelin-1 Transgenic (ETTg) Mice Generates Moderated Pulmonary Hypertension, Not Severe Pulmonary Hypertension and Its Plexiform Lesions.

Muhannad Ghanem Sabri1, Kazuhiko Nakayama1, Haru Sakai Miyazawa2, Yoko Suzuki1,2, Kazuhiko Nakayama1, Hary Sakti Muliawan1, Muhammad Gahan Qadri3, Keiko Yagi1, Koji Ikeda2, and Noriaki Emoto1,2

Background: Pulmonary hypertension (PH) is a disease which affects the vascularization of the lungs. PH is a rare disease, however the mortality rate is still high, with the most cause of death being heart failure. During the progression of PH, endothelial damage may participate in creating more severe vasoconstriction. Endothelin-1 (ET-1) which is mostly produced by endothelial cells is already known to be involved in the progression of PH, especially through its strong vasoconstriction effects. Furthermore ET-1 is also known to be involved in worse degree of PH, inducing plexiform lesions, a hallmark of severe PH. Objective: We aimed to create a model of severe PH in mice using ETTg mice combined with chronic hypoxia condition. Methods: We used ET-1 transgenic (ETTg) mice which have higher level of ET-1. We induced PH in ETTg mice and wild type littermates by putting them in hypoxic chamber containing 10% of O2. Ten-week old mice were put in hypoxic chamber and normoxic condition mice were used as controls. Mice were examined and sacrificed after 6 weeks in hypoxic chamber, a chronic condition of hypoxia, in order to get irreversible and more severe condition of PH. Right heart hemodynamic was assessed using Right Ventricular Systolic Pressure (RVSP) by transducer. Level of expression of ET-1, its receptor ETA (ETAR) and ETBR, Interleukin-1 Beta (IL-1 Beta), eNOS, and iNOS were evaluated by real-time PCR or western blot. Vessel mean wall thickness was analyzed using Hemodynamics Evaluation (HE) staining. Results: Abundance of ET-1 combined with chronic hypoxia increased ET-1, ETAR and ETBR expression. IL-1 Beta, eNOS and iNOS increased expression were also found. This was accompanied by the increase of wall thickening in small pulmonary vessels and inflammation. However, plexiform lesions as the hallmark of severe PH could not be found. Conclusion: Our results suggest that the abundance of ET-1 combined with chronic hypoxia condition could increase severity of PH moderately. Furthermore, plexiform lesions as the hallmark of severe PH could not be found, suggesting there might be a counter regulatory mechanism toward increasing ET-1 level through Nitric Oxide Synthases (NOS) induced by the increase of eNOS and iNOS. This study is funded by Grant-in-Aid for Scientific Research (C) 26460213 and 1850813 from the Japan Society for the Promotion of Science.

COUNTER REGULATING CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION THROUGH SUPPRESSION OF ERK1/2 SIGNALING

Yoko Suzuki1,2, Kazuhiko Nakayama1, Haru Sakai Miyazawa2, Muhannad Ghanem Sabri1, Yuuki Haseimoto1,1, Keiko Yagi1, Koji Ikeda2, and Noriaki Emoto1,2
1Int. Med. Cardiovascular Div., Kobe Univ., 7-5-1 Kusunokicho Chuo-ku, Kobe Hyogo, 6500017, Japan, 2Clinical Pharmacy, Kobe Pharma. Univ., 4-19-1 Motoyama Kitamachi, Higashinada-ku, Kobe Hyogo, 6508588, Japan.

Abstract:
Vascular remodeling is one of the most cause of deaths dominated by heart failure. During the progression of PH, endothelial damage may participate in creating more severe vasoconstriction. Endothelin-1 (ET-1) which is mostly produced by endothelial cells is already known to be involved in the progression of PH, especially through its strong vasoconstriction effects. Furthermore ET-1 is also known to be involved in worse degree of PH, inducing plexiform lesions, a hallmark of severe PH. Objective: We aimed to create a model of severe PH in mice using ETTg mice combined with chronic hypoxia condition. Methods: We used ET-1 transgenic (ETTg) mice which have higher level of ET-1. We induced PH in ETTg mice and wild type littermates by putting them in hypoxic chamber containing 10% of O2. Ten-week old mice were put in hypoxic chamber and normoxic condition mice were used as controls. Mice were examined and sacrificed after 6 weeks in hypoxic chamber, a chronic condition of hypoxia, in order to get irreversible and more severe condition of PH. Right heart hemodynamic was assessed using Right Ventricular Systolic Pressure (RVSP) by transducer. Level of expression of ET-1, its receptor ETA (ETAR) and ETBR, Interleukin-1 Beta (IL-1 Beta), eNOS, and iNOS were evaluated by real-time PCR or western blot. Vessel mean wall thickness was analyzed using Hemodynamics Evaluation (HE) staining. Results: Abundance of ET-1 combined with chronic hypoxia increased ET-1, ETAR and ETBR expression. IL-1 Beta, eNOS and iNOS increased expression were also found. This was accompanied by the increase of wall thickening in small pulmonary vessels and inflammation. However, plexiform lesions as the hallmark of severe PH could not be found. Conclusion: Our results suggest that the abundance of ET-1 combined with chronic hypoxia condition could increase severity of PH moderately. Furthermore, plexiform lesions as the hallmark of severe PH could not be found, suggesting there might be a counter regulatory mechanism toward increasing ET-1 level through Nitric Oxide Synthases (NOS) induced by the increase of eNOS and iNOS. This study is funded by Grant-in-Aid for Scientific Research (C) 26460213 and 1850813 from the Japan Society for the Promotion of Science.

3.82 BOSENTAN REVERSES THE HYPOXIA-INDUCED DOWN-REGULATION OF THE BONE MORPHOGENETIC PROTEIN SIGNALING IN PULMONARY ARTERY SMOOTH MUSCLE CELLS

Hidetsugu Maruyama1,2, Gérard Dewachter1, Satoko Sakai1, Robert Naini3, and Laurence Dewachter1
1Cardiovascular Div., Moriya Daiichi Genl. Hosp., 1-17 Matsuraya-machi, Moriya, 302-0102, Japan, 2Lab. of Physiology & Pathophysiology, Fac. of Med., Univ. Libre de Bruxelles, 808, Louvois Rd, Brussels, 1070, Belgium, 3Dept. of Cardiovascular Med., Fac. of Medicine, Univ. of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8577, Japan.

Aims: Pulmonary hypertension (PH) is a common complication of chronic hypoxic lung diseases. Bone morphogenetic protein (BMP) and endothelin-1 signaling pathway...
Endothelin-1 System in Acute Lung Injury in a Rat Model of Early Hours of Endotoxemia

Yasuna Kusunokicho, Masayuki Arai, Itaru Nakajima, Nobukazu Sone, Shila Ablat, Seho Zekly, Tanjila Khatun, Satoshi Kawasaki, and Taro Minatunga

Emergency & Critical Care Med., Fac. of Med., Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.

Among multiple organs failure and dysfunction associated with sepsis, molecular mechanisms of sepsis-associated acute lung injury (ALI) are poorly defined. Endothelin (ET)-1, a potent vasoconstrictor has been found to be involved in the pathogenesis of ALI in a rat model of sepsis. Here we studied whether endothelin hydrochloride, an ultra-short-acting β-blocker, can play an important role in ameliorating LPS-induced ALI through the normalization of ET-1 system. Male Wistar rats at 8 weeks of age were administered with either saline or lipopolysaccharide (LPS) for three hours and some LPS-administered rats were continuously treated with landiolol for 6 hours. The levels of ET-1, ET (A) and ET (B) receptor mRNAs and proteins were measured by real-time PCR and Western blot analysis, respectively.

Conclusions: Hypoxia mimetic agent landiolol decreases the expression of ET-1, ET (B) receptor and ET (A) receptor, respectively, in LPS-induced ALI model. Pretreatment with landiolol reversed the decrease in ET (B) receptor expression induced by LPS treatment. We conclude that landiolol mediated ALI prevention partly through the endothelin system in PA-SMCs.

3.83 THREE HOURS TREATMENT WITH LANDIOLOL HYDROCHLORIDE, AN ULTRA-SHORT-ACTING β-BLOCKER, IS NOT EFFECTIVE TO REVERSE ALTERED PULMONARY ENDOTHELIN-1 SYSTEM IN ACUTE LUNG INJURY IN A RAT MODEL OF EARLY HOURS OF ENDOXTOMIA

Jasmin Kristianto1,2, Michael G. Johnson1,2, Abigail Radcliff1,2, Ryley Zastrow1,2, Jill Akhtar1, Sohel Zaedi1, Tanzila Khatun1, Satoru Kawano1, and Taro Mizutani1

Departments of Cardiology and Critical Care Medicine, and Cardiovascular Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.

A recent study showed that time-dependent increase of ET-1 and ET (A) receptor expression was observed in LPS-induced ALI model. We aimed to determine whether three-hour treatment with landiolol for three hours failed to normalize upregulated pulmonary ET-1 expression in endotoxemia. Of note, parallel to ET system, landiolol also failed to reverse the up-regulation of ET (B) receptor in lung tissues at the early hours of endotoxemia. Finally, treatment of LPS-administered rats with landiolol for three hours failed to normalize the upregulated pulmonary ET-1 and ET (A) receptors (although there was a normalizing trend) while caused further significant down-regulation of ET (B) receptor in lung tissues at the early hours of endotoxemia. Of note, parallel to ET system, landiolol also failed to reverse the up-regulated inflammatory mediators (TNF, INF-α) in lung tissues in endotoxemia. Landiolol hydrochloride, an ultra-short-acting and highly cardio-selective β-blocker, has already been approved as an emergency treatment of supraventricular tachycardia in patients in Japan. In a recent study, landiolol exerted lung protective effect in sepsis. These data taken together, led us to conclude that landiolol mediated ALI improvement in sepsis may not involve pulmonary ET system and potential inflammatory cytokines, although a dose and time dependent study is needed in future to have more specific conclusion. This study has been supported by Ministry of Education and Science in Japan.

3.84 POSTNATAL ECE1 ABLATION CAUSES SEVERE, PROGRESSIVE PULMONARY DISEASE

Arijit Karmakar1,2, Michael G. Johnson1,2, Abigail Radcliff1,2, Byley Zastrow1,2, Jill M. Koch1, Forum Patel1, Xiaobing Wang1, Rui Ren1,3, and Robert Blank1,2,4

Endothelin converting enzyme-1 (ECE1) catalyzes the conversion of inactive big endothelin 1 (ET1) to active ET1. Homozygous Ece1 knockout (KO) mice die in utero or at birth, displaying multiple abnormalities recapitulating the phenotypes of Edn1, Edn3, Edf1, and Edf2 KOs. These include malformations of the cardiac outflow tract, mandibular hypoplasia, and intestinal aganglionosis, and these abnormalities occur in spite of the presence of ample tissue ET. However, increased ECE1 activity and circulating and/or tissue ET are associated with many adult cardiovascular diseases, including idiopathic pulmonary fibrosis (IPF), a chronic and fatal lung disease. There is an apparent paradox between the need for ET1 in development and its harmful effects in adult disease. To study the role of ECE1 in postnatal life, we lab developed a conditional Ece1 KO mouse, in which Ece1 is ablated following tamoxifen treatment. We hypothesized that ECE1 serves to localize ET1 signals to specific cell populations and is essential in normal adult physiology. We studied the following groups: mice given vehicle rather than tamox, mice lacking tamoxifen-Inducible Cre recombinase, mice harboring a normal Ece1 allele (Ece1+/-), and the experimental animals (Ece1−/−). Mice were treated with vehicle or tam at 5-9 weeks of age. Cre Ece1−/−mice showed 85-100% mRNA and protein knock-down efficiency 8 weeks after tam treatment. Beginning several weeks following tam treatment, Cre Ece1−/−mice develop a progressive respiratory illness manifested by tachypnea, decreased activity, and weight loss, requiring euthanasia for humane considerations within 3 months of tam treatment. Associated features include decreased adipose tissue mass, lower blood pressure, pectus excavatum, and right heart failure of variable severity. The right sided CHF is manifested by right heart enlargement, reduced stroke volume, and reduced cardiac output as measured by echocardiography. Histological examination revealed eosinophilic crystalline pneumonia and increased collagen deposition in the lung and heart. These findings are consistent with development of IPF in the experimental mice. Our findings show that Ece1 ablation in postnatal animal results in a severe cardiopulmonary disease, suggesting that ectopic activation of ET1 by tissue proteases rather than by ECE1 is the primary mechanism underlying the observed association of increased ET1 signaling in disease states.

3.85 THE UTILITY OF THE PULSE OXIMETER FOR PULMONARY HYPERTENSION DURING THE SIX MINUTE WALK TEST

Naoki Tamada1, Kazuhiko Nakayama1, Hiroto Kirisunari1, Yasunori Tsibol2, Yuto Shinokura1, Yoko Suzuki1, Noriaki Emoto3, and Kenichi Hirata1

Objective: The six minute walk test (6MWT) has widely been performed to evaluate exercise tolerance on the patients of pulmonary hypertension (PH). But some studies suggested that six minute walk distance (6MWD) is not well correlated with the prognosis and hemodynamics. We evaluated the dynamics of vital sign during 6MWT to figure out more sensitive parameters for evaluating exercise tolerance in PH.

Method: We utilized the pulse oximeter (Konica Minolta PULSOX-300i) on 10 PH patients and 13 healthy volunteers during 6MWT, and compared the data of blood oxygen saturation (SpO2) and pulse rate between these groups. Furthermore, we evaluated these parameters by examined their correlation with hemodynamics obtained right heart catheterization and indices from cardiopulmonary exercise test (CPX).

Results: 10 PH patients (9 patients with pulmonary hypertension, 1 lung disease) were examined. In CPX, 5 of them were treated with endothelin receptor antagonists (ERA), 4 by soluble guanylate cyclase (sGC), 1 by phosphodiesterase type5 inhibitor (PDE5-I), and 1 by oral epoprostenol analogue. Compared with 13 healthy volunteers (4 females, the patients walked shorter (368±34 vs 489±10m; p<0.01), have more severe dyspnea (New Borg Scale: 3.1±0.9 vs 2.0±0.2; p<0.01), and showed lower SpO2 (95.3±0.4% vs 98.0±0.2% at baseline; p<0.01, 91.3±0.6% vs 96.3±0.3% on average; p<0.01, 88.3±0.9% vs 94.1±0.6% at a minimum point; p<0.01), and higher pulse rate at baseline (87.8±4.4 bpm vs 71.1±3.1 p<0.01). We also examined the correlation between mean pulmonary arterial pressure (mPAP) and these vital signs with other parameters (sGC, PDE5-I). Pulse rate (PR) didn’t show any significant correlation with mPAP (baseline PR: r=0.09, average PR: r=0.17, maximum PR: r=0.12). 6MWD, mean saturation (SpO2 at 2 baseline had no correlation with mPAP (6MWD: r=0.24, maximum VO2: r=0.35, SpO2 at baseline: r=0.29). New Borg scales and VE/VO2 slope show significant correlation with mPAP (New Borg scale: r=0.65, VE/VO2: r=0.50). SpO2 on average and at a minimum point show strong correlation with mPAP (on average: r=0.88, at a minimum point 0.95).

Conclusion: We documented SpO2 during 6MWT has much stronger correlation with hemodynamics than 6MWD and CPX parameters for the first time in PH patients. Monitoring SpO2 in exercise provide us much information. Clinical utility of this parameter should be further elucidated.
2015 APS Conference

14th International Conference on Endothelin: Physiology, Pathophysiology and Therapeutics

ABSTRACTS OF INVITED AND VOLUNTEERED PRESENTATIONS

4.0 ET, SEX, AND PREGNANCY

4.1 SEX AND HYPERTENSION

Jennifer Sullivan

Acute lung injury is a common and life-threatening complication in sickle cell disease (SCD). Endothelin-1 (ET-1) is elevated in SCD and is known to mediate local inflammation and oxidative stress. We established an in vivo injury model in SCD mice based on pneumolysin (PLY), a pore-forming toxin released from *S. Pneumoniae*, a common pathogen in SCD patients. The goal of this study was to investigate the role of ET-1 in the PLY injury pathway. Transgenic SCD mice were treated with an intra-tracheal administration of PLY (1.5 μg/kg). PLY-induced barrier dysfunction was assessed by Evans Blue Dye (EBD) incorporation with or without pretreatment with the ETA blocker Ambenitram (AMB). Additionally, NADPH oxidase isoforms, ET-1 and its cognate receptors were measured in lungs from SCD and control mice. PLY exposure induced a two-fold greater EBD leak in SCD mouse lungs compared to controls. Pretreatment with AMB blocked this SCD-related step of the injury response. Further, the SCD lung expressed higher mRNA levels of ET1 and ET(A), and NOX2 proteins in pulmonary vascular endothelium. PLY-induced barrier dysfunction, a clinically relevant form of lung injury, is enhanced in SCD. ET-1 signaling through the ETA receptor significantly augmented the injury response, which is likely mediated by increased oxidative stress. Clinically available ETA, receptor blockers, like Ambenitram, may provide a novel therapeutic option in patients with SCD. Supported by HL-117684.

3.88

ENDOTHELIN RECEPTOR BLOCKADE ATTENUATES THROMBIN- AND HYPOXIA-STIMULATED INTRACAPILLARY NEUTROPHIL RETENTION IN LUNGS OF SICKLE CELL DISEASE MICE

Xingang Hu1, Haian Chen1, Carol Dickerson1, Steffen Meiler2, and Songwei Wu3

Endothelin-1 (ET-1) has been implicated in a number of critical pathogenic events underlying a variety of vasculopathies including sickle cell disease (SCD) however, the physiologic significance of ET-1 elevations in SCD remains poorly understood. Here we sought to determine whether ET-1 mediates an augmented agonist-stimulated intracapillary neutrophil retention (INR) in SCD lungs. We employed an in vivo porcine pulmonary endothelial (PME) perfused lung model. Lungs isolated from 12 week transgenic humanized SCD homo- (SCD(+)) and hetero- (SCD(+/-)) zygotes mice, were assessed for intravascular PMN sequestration using ITC for leukocyte myeloperoxidase following either thrombin perfusion (3unit/mL/15min) or hypoxic ventilation (5%O2/30min) followed by perfusion of non-stimulated rat PMNs (1.0×10e9/10mL/20min). Thrombin- and hypoxia-stimulated INR was observed to be more pronounced in both groups of mice. To examine if the ET-1 signaling pathway is involved in this process, we treated both groups with antagonists to either ETA or ET(A/B) blocking comparably reduced thrombin- and hypoxia-stimulated INR in SCD(+/-) lungs, but had a minimal effect on SCD(+/-) lungs. These results suggest a chronic alveolar capillary endothelial pro-inflammatory phenotype that involves a potentiated ET-1 signaling pathway. Supported by HL-117684 (to S. Meiler) and HL-066299 (to S. Wu).

3.87

THE EVALUATION OF ENDOTHELIN RECEPTOR ANTAGONIST FOR PULMONARY HYPERTENSION WITH LUNG DISEASE

Kazuhiko Nakamura1, Hiroki Kinutani,2 Yato Shinkara, Naoki Tamada, Yoko Suzuki,3 Nornoki Emoto3 and Ken-ichi Hirata1

Objective: Although clinical efficacy of endothelin receptor antagonist (ERA) is established in the patients with pulmonary arterial hypertension, an application of ERA to pulmonary hypertension (PH) with lung disease is still under debate. This study is designed to analyze retrospectively the effect of ERA on hemodynamics, oxygenation, and symptom in PH patients with mild and severe lung diseases, separately.

Methods: We analyzed 46 PH patients with lung diseases separately depending on the severity of PH and lung disease. Severe PH is defined as more than 35mmHg of mean pulmonary arterial pressure (mPAP) which is measured by right heart catheterization (RHC), and mild PH is as 25 to 35mmHg of mPAP. Besides, we defined the severity of PH and lung disease. Severe PH is defined as more than 35mmHg of mPAP and baseline was significant (p<0.001), being negative (mean= -0.0154 pmol/min) in retainers but positive (mean= 0.0194 pmol/min) in excreters. ET-1 excretion was significantly higher (p=0.028) in retainers than excretors at baseline but significantly lowered in retainers under stress (p=0.001). ET-1 excretion continued to decline in retainers during recovery but returned to pre-stress levels in excretors. Albunin excretion and albumin to creatinine ratio were significantly higher in retainers (p=0.046, respectively). During stress, the ibersartan group had significantly higher ET-1 excretion than placebo (p<0.001). Loss of ET-1-dependent natriuresis may account for sodium retention during stress and correction of sodium handling would be more beneficial in ET-1-mediated natriuresis. Retainers have lower basal ET-1 excretion and increased albuminuria, suggesting renal impairment and risk for future diseases.

4.0 ET, SEX, AND PREGNANCY

4.1 SEX AND HYPERTENSION

Jennifer Sullivan

1Physiology, Georgia Regents Univ., 1459 Laney Walker Blvd., CB2204, Augusta, GA, 30912.

Hypertension is well-recognized as having distinct sex differences in the prevalence, absolute blood pressure values, and molecular mechanisms contributing to the pathophysiology of the disease. Hypertension is a complex and multifaceted disease, and sex differences in the molecular mechanisms regulating blood pressure likely underlie the above observations. Numerous vasoactive pathways have been implicated in blood pressure control in hypertension, as well as in contributing to sex differences in blood pressure, including the renin angiotensin system, the nitric oxide pathway, oxidative stress, inflammation, and the endothelin (ET) system. Endothelin (ET)-1 has been described as the most potent vasoconstrictor substance identified to date, and over-activation or dysfunction of the ET system contributes to the development and progression of hypertension. There are numerous sex differences in the ET system and these differences have been linked to sex differences in blood pressure control, including sex differences in ET-1 levels, sensitivity to ET-1-induced vasoconstriction, and ET receptor expression. Due to the prominent role played by the ET system in maintaining cardiovascular homeostasis, coupled with the ability of the ET system to interact with numerous other pathways involved in blood pressure control more studies are needed to better define how the ET system regulates blood pressure in both males and females. References: Zimmerman and Sullivan. 2013. Hypertension:

5.0 ROLE OF ET IN THE VASCULARITY

5.1 ET-1 IN THE HEART IN HEALTH AND DISEASE

Neeraja Emoto\(^1\)^\(^2\)

\(^1\)Clinical Pharmacy, Kobe Pharmaceutical Univ., 4-19-1, Motomyama-kita-machi, Higashinada, Kobe, 658-8588, Japan. \(^2\)Div. of Cardiovascular Med., Kobe Univ. Grad. Sch. of Med., 7-5-1, Kasumoki, Chuo, Kobe, 650-0017, Japan.

Endothelin-1 (ET-1) is a multifunctional peptide with complex effects on the cardiac function. Pharmacological blocking of the endothelin system was effective in the treatment of heart failure in rodent models. However, despite convincing experimental evidence of a pathogenic role for endothelin in heart failure, many initial clinical studies failed to show beneficial effect of endothelin receptor antagonists in patients. Our group and others have generated and analyzed a series of the endothelin-related genes-deficient mice to investigate the possible cause of these contradictory results. Some animal models have demonstrated that ET-1 has hypertrophic and pro-fibrotic effects in the heart as expected. On the other hand, ET-1 appears to have cardio-protective properties through its anti-apoptotic effects. Thus, ET-1 induces numerous cellular responses in the heart that may be contradictory depending on the situation. Based on the knowledge obtained from the studies with the genetically modified animals, the question whether chronic blockade of the endothelin system by, endothelin receptor antagonists or endothelin-converting enzyme inhibitors, might be beneficial in particular cardiac conditions will be discussed. Support: Grant-in-Aid for Scientific Research (C) 26460213 and 18590813 from the Japan Society for the Promotion of Science. REFERENCES: Vignon-Zellweger N, Heiden S, Miyauchi T, Emoto N. Molecular Biology of Endothelin-1 in the Renal and Cardiovascular Systems. Life Sci. (2012) 91, 490, Heiden S, Vignon-Zellweger N, Masuda S, Yagi K, Nakayama K, Yanagisawa M, Emoto N. Vascular endothelin derived endothelin-1 is required for normal heart function after chronic pressure overload in mice. PLoS One. (2014) 9, e88730.

7.0 ENDOTHELIN AND END-ORGAN INJURY

7.1 ENDOTHELIN AND DIABETIC COMPLICATIONS

John Pernow\(^1\)

\(^1\)Dept. of Cardiology, Karolinska Inst., Karolinska Univ. Hosp., Stockholm, 17176, Sweden.

Endothelin-1 (ET-1) is a vasoconstrictor, proinflammatory and proliferative endothelial cell-derived peptide that is of significant importance in the regulation of vascular function. The production and function of ET-1 acting on its receptors ETA and ETB are altered during development of cardiovascular and metabolic diseases including diabetes mellitus. These alterations include increased production of ET-1 as well as changes in the expression of ETA and ETB receptors. The vascular homeostasis in diabetes is altered to a pro-inflammatory, pro-oxidative and pro-thrombotic state favouring atherothrombosis with microvascular and macrovascular complications. These changes are both driven by and further promoting endothelial cell dysfunction. A central mechanism is the negative effect of glucose that results in accumulation of reactive oxygen species that stimulates ET-1 production and reduces nitric oxide production and increases its inactivation. The increased production of ET-1 and its receptors further stimulates oxidative stress creating a vicious cycle in diabetes. The increased vasoconstrictor response to ET-1 in diabetes is the result of increased expression of both ETA and ETB receptors on vascular smooth muscle cells and due to reduced endothelin-dependent and nitric oxide-mediated dilatation. Administration of both selective ETA and dual ETA/ETB receptor antagonists improve endothelin-dependent vasodilatation in experimental models of diabetes as well as in clinical studies of patients with type 2 diabetes mellitus. Interestingly, ET receptor antagonists not only improves vascular function but also increases insulin sensitivity and insulin resistant states via an effect that seems to be related to both insulin delivery and facilitation of glucose uptake. Collectively, available data suggest that ET-1 plays an important pathophysiological role in complications associated with diabetes and that ET receptor antagonists may provide beneficial effects as a therapeutic target for treatment of these complications.

8.0 ENDOTHELIN, ANGIOTENSIN AND VASCULAR FUNCTION

8.1 ET AND ANTI-ANGIOGENIC THERAPY

Anton van den Meiracker\(^1\)

\(^1\)Dept. of Int. Med., Erasmus MC, Geversdijlsveld 230, Rotterdam, 3015 CE, Netherlands.

Vascular endothelial growth factor (VEGF) secreted by tumor cells targets endothelial cells (ECs) to promote angiogenesis. The recognition that angiogenesis is critical to tumor growth has led to the development of treatments to inhibit VEGF-signaling, like anti-VEGF antibodies, small molecule VEGFR inhibitors (RTKIs) and soluble VEGFR to trap VEGF. The endothelial VEGF inhibitor soluble Flk-1/kreisine kinase (sFlt-1) is markedly increased in preeclampsia. Soon after their introduction inhibitors of the VEGF-signaling pathway appeared to be associated with hypertension and renal injury. In patients with renal cancer exposed to the RTKIs sunitinib we observed that the rise in blood pressure (BP) was associated with increased circulating ETA and ETB levels and renin suppression. In subsequent rodent studies sunitinib administration was associated with a dose-dependent increase in BP, proteinuria and circulating ETA-1 levels. In preeclamptic patients we found that plasma levels of ET-1 and sFlt-1 strongly correlated, indicating ET-axis activation, by both exogenous and endogenous VEGF inhibition. Proof that ET activation is involved in the rise in BP and proteinuria during anti-angiogenic treatment was obtained with the ET-receptor antagonist macitentan. Administration of macitentan with sunitinib could largely prevent the rise in BP and proteinuria in rats and normalize the rise in BP to pretreatment values in swine. The mechanism by which VEGF-inhibition results in activation of the ET-axis requires clarification. Studies in cultured ECs have provided contrasting findings, both increased and decreased ET-1 production in response to VEGF. VEGF-inhibition causes a decrease in NO production, which potentially contributes to the rise in ET-1 during anti-angiogenic treatment. Furthermore, since VEGF is essential for the maintenance of a healthy endothelium, EC activation, contributing to increased ET production, may occur during antiangiogenic treatment.
Numerous pre-clinical studies have implicated endothelin-1 (ET-1) in the pathogenesis of diabetic nephropathy. Proteinuria was reduced after 3-6 months of treatment, however the study was prematurely halted due to increased cardiovascular morbidity and mortality associated with avosentan-induced fluid retention. Subsequent phase 2 trials found that ETA antagonists, on renal disease progression. Reference: Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int 86:896-904, 2014.

13.3 ENDOTHELIN ANTAGONISM, WHERE NEXT? Pierre-Louis Thérona

Techo Cardiovascular Ctr., PARCC, INSERM, 56 rue Leblanc, Paris, 75015, France.

Endothelin (ET) is not merely a vasoconstrictor, but also a multifunctional peptide. Despite initial disappointment in several trials such as those in the field of congestive heart failure, PAH became the first licensed indication for ET receptor antagonists in 2000. Some of the early studies, although adequately executed, demonstrated lack of efficacy for these agents. Others, through lack of rigorous trial design, showed an unacceptable high incidence of side effects. Unfortunately, there is a global trend to encourage too rapid a progression of basic scientific discoveries into clinically relevant strategies, a concept referred to as “translational research.” We must question whether we simply move too fast from the bench to the bedside without the requisite knowledge or do we simply ignore some important available pre-clinical data? Pre-clinical studies suggest that chronic conditions such as proteinuric glomerular diseases, solid tumors, connective tissue diseases and vasculitides and the chronic microvascular damage associated with sickle cell anemia all represent attractive clinical targets for ET receptor antagonists (ETRA). Studies that have moved fastest into the clinical arena are those in diabetic nephropathy and focal and segmental glomerulosclerosis. However, treatment with ETARAs also effectively interferes with development of glomerulosclerosis, fibrosis and glomerulosclerosis and, in mice, remain no clinical studies investigating the therapeutic potential of ETRAs in transplantation medicine. Appropriate selection of patients and diseases should ensure safety with an acceptable side effect profile. In addition to transplantation we will discuss other potential indications for ETRAs in this lecture. In addition to its vasoconstrictor and tissue-remodeling actions, the endothelin peptides should also be considered as cytokine-like. The pro-inflammatory role of the ET system is clear, although not well deciphered. Its involvement in the development and progression of autoimmune diseases deserves further attention. A strong body of evidence suggests that acute and severe conditions such as ischemia/reperfusion injury should be treated with anti-endothelin strategies, which might prevent their progression to chronic damage. This includes a variety of conditions such as acute kidney injury, post-transplant ischemia/reperfusion injury, sickle cell disease and occlusive crises. For ET blockers to realize their potential further information needs to be obtained regarding the basic mechanisms of how they work which will inform the optimal time window for their dosing. Despite the vast volume of basic research on the ET system, the clinical trials have gone on to emphasize the need to return to the bench to further our understanding of the fundamental mechanisms. This is important for the development of maximally effective therapeutic strategies with minimal adverse effects.

13.4 REVIEW OF CLINICAL DEVELOPMENT OF SPARSENTAN, A DUAL-ACTING ANGIOTENSIN AND ENDOTHELIN RECEPTOR ANTAGONIST

Radko Kornons, Meghan Kelly, Jennifer Hunt and Horacio Plotkin

Retrophin, Inc., Cambridge, MA, USA.

Endothelin 1 (ET) has been well established as an important player in renal physiology and pathophysiology. Similar to inhibitors of renin-angiotensin system (RAS), ET type A (ETa) receptor blockers (ETAR) have demonstrated a spectrum of beneficial effects in models of kidney diseases. Moreover, these agents could provide additive protective effects to RASIs in proteinuric diseases, a hypothesis being currently tested in clinical trials. This presentation will provide an overview of Sparsentan, a first-in-class, orally-active, dual-acting angiotensin receptor Type 1 receptor blocker (ARB) and highly selective ETA, and the rationale for its clinical development in primary focal segmental glomerulosclerosis (FSGS). FSGS is a disorder of the podocyte and a common cause of end-stage kidney disease. The role of endothelin in the pathophysiology of podocyte disorders, including FSGS.目前已有的临床数据表明，Sparsentan的临床开发在FSGS等病变中显示出了良好的安全性。
test whether at least one Sparsentan dose (200, 400, or 800 mg) is superior to Irbesartan (300 mg/day) in decreasing proteinuria, as measured by the change from baseline. As secondary objectives, the trial will evaluate a spectrum of additional parameters including the proportion of patients in each dose group that achieve pre-specified targets of Upc reduction after 8 weeks; time to and durability of these effects; quality of life parameters; and detailed safety analysis including adverse actions of ERAs.

13.5
ENDOTHELIN RESEARCH AND DRUG DISCOVERY
Martine Clozel1, Marc Iglarz1, Martin Bolli1, John Gatfield1, and Patrick Hess1
1Actelion Pharmaceuticals, Ltd., Gewerbestrasse 16, Allschwil, CH-4123, Switzerland.
Dual endothelin receptor antagonists (ERA) have been registered for the treatment of pulmonary arterial hypertension. The last one to be approved, macitentan, was discovered by a tailored research aimed at improving efficacy and safety. The goal of increased efficacy was based on the study of the different roles between physiology and pathology of endothelial and smooth muscle ETB receptors, and on understanding of receptor binding kinetics of macitentan. The goal of increased safety was based on the discovery of the role of ETB receptors in the regulation of vascular permeability and vasopressin release, and on elucidation of the mechanism of aminotransferase increases due to bosentan. Macitentan binds very deeply into a subpocket of the ETA receptor and is an insurmountable antagonist. It also antagonizes the ETB receptors. In hypertensive rats macitentan had an additional effect on top of maximal effect of bosentan or ambrisentan. Macitentan had major effects on cardiac protection and improved endothelial function. Macitentan did not cause vascular permeability increase in rat vessels and did not increase bile salts. In patients with pulmonary arterial hypertension, macitentan reduced morbidity-mortality events by 45 % and showed a favorable safety and tolerability profile.

Thank you! Thank you! Thank you!
To the generous sponsors of the ET-14 Conference

Actelion Pharmaceuticals, Ltd.
Gilead Sciences, Inc.
NIH, National Heart, Lung, and Blood Institute
Pharmazz, Inc.
Retrophin, Inc.
Cell Signaling Technology, Inc.
Data Sciences International
BioTek Instruments
Thermo Fisher Scientific
Elsevier
Life Sciences
British Pharmacological Society
2015 APS Conference: 14th International Conference on Endothelin
Physiology, Pathophysiology and Therapeutics

AUTHOR INDEX

*Indicates Invited Speaker

A
Abdelhaid, M., 3.29, 3.46, 5.3
Abdul, Y., 3.41, 3.42, 3.46
Aghdooa, A., 3.69
Aquaru-Oliveira, M. H., 3.52
Alktar, S., 3.43, 3.44, 3.54, 3.76, 3.83
Albertoni-Borgese, M. F., 3.3, 6.6
Alvarez, C., 3.64
Amann, K., 3.51
Anurkar, S., 3.70
Arsnt, M., 3.58
Aounna, K., 3.45, 3.54, 3.76, 3.79
Arora, R., 3.78
Audard, V., 3.18

B
Bagher, A., 3.75
Bagnar, A. *, 3.49, 13.1
Bailey, M., 3.4, 3.61
Balanga, S., 3.3
Bamett, T. D., 3.39
Barchuk, M., 3.3
Barthouni, T., 3.32, 3.33
Barlovi, S., 3.20
Barton, M., 3.51
Batista, D., 3.67
Baudrie, V., 3.34, 3.61
Benaduce, A. P., 3.67
Benigni, A., 3.1, 7.6
Bhalla, S., 3.70, 3.72
Biancioti, L., 3.64
Blank, R., 3.59, 3.84
Boesen, E., 3.21
Bolli, M., 13.5
Bonamichini, B., 3.1
Bonnin, P., 3.34
Brosiuni, E., 3.1
Briay, S., 3.24, 3.48, 3.58
Broome, H., 2.3, 3.62
Buoninconzi, G., 3.77
Burch, M., 3.40

C
Ciair, B., 3.16, 3.20
Capurra, V., 3.49
Cardero, D., 1.4, 3.67
Cassinotti, L., 3.64
Cattaneo, I., 3.1
Cervenka, L., 3.9
Cervenkovka, L., 3.9
Chabova, V., 3.39
Chang, I., 3.60
Chen, H., 3.87
Chong, A., 3.27
Ciuffofoa, R., 3.49
Clozal, M.*, 13.5
Coelho, S. C., 3.31
Conti, S., 3.1
Crosby, A., 3.77
Cubelaw, G., 3.4, 7.3
Czopek, A., 3.15, 3.34, 3.61

D
Daniel, C., 3.51
Dashwood, M. R., 3.52
Davenport, A., 1.1, 3.77
Dawodu, M., 3.69
de Andrade Rodrigues, T. M., 3.52
de Freitas, M. S., 3.52
De Miguel, C., 3.5, 3.10, 7.4
Denovan-Wright, E., 3.75
Desbiens, L., 3.66, 11.3
Despiante, T., 3.26
deSoerens, C. A., 3.35, 3.36, 3.37, 3.38, 3.39
Desoye, G., 3.56
Devarapalli, M., 3.58
Devacher, C. S., 3.82
Devacher, L. S., 3.82
Dhaur, N.*, 2.2, 3.15, 3.34, 3.61, 9.1
Di Castro, V., 3.49
Dickerson, C., 3.47, 3.86, 3.87
Dieber-Rotheneder, M., 3.56
Dichl, K. J., 3.37, 3.9
Do Nascimento, H. M., 3.52
Dolezalova, S., 3.9
Donnelly, C., 3.65
D'Orelans-Juste, P., 3.66
Dow, C., 3.35, 3.36, 3.37, 3.38, 8.4

E
Ermo, N.*, 3.53, 3.80, 3.81, 3.81, 3.85, 3.88, 5.1
Ergul, A., 3.29, 3.41, 3.42, 3.46, 3.63

F
Fay, R. T., 3.39
Ferrandina, G., 3.49
Filippuzzi, A., 3.34
Filgny, C., 3.18
Fox, B., 3.19, 6.1
Frahalb-Aquino, J. C., 3.31
Fredette, N., 3.51
Fukumoto, S., 3.50, 6.12

G
Cagliardini, E., 3.1
Canle, S., 3.44
Cao, Y., 3.22, 9.3
Gatsfield, J., 1.35
Gibosko, G., 3.71
Gohar, E. Y., 3.7, 6.5
Gonzalez, F., 3.33
Gomitsky, J., 3.32, 3.33
Gorskhoob, B., 3.86
Granger, J., 3.30, 4.4
Greiner, J. J., 3.35, 3.36, 3.37, 3.38, 3.39
Grilo, G., 3.67
Griss, D., 3.66
Gui, M., 3.64, 11.5
Gulati, A., 3.23, 3.24, 3.26, 3.48, 3.57, 3.58, 3.70, 3.72, 3.73, 11.6

K
Kadosawa, T., 3.50
Kasztan, M., 3.14, 6.2
Kavalchik, P. J., 3.39, 8.2
Kawano, S., 3.43, 3.44, 3.45, 3.54, 3.76, 3.83
Kelly, M., 13.4
Kelly, M., 3.75
Khutian, T., 3.83
Kimura, T., 3.79
Kinutani, H., 3.85, 3.88
Kluth, D., 3.15, 3.34, 3.61
Konietz, K., 3.59
Koplan, L., 3.9
Kos, L., 3.67, 3.68
Kristianto, J., 3.59, 3.84, 10.3
Kuc, R., 1.1, 3.77
Kurnar, E. J., 3.73
Kurnar, R., 3.78

L
Lapointe, C., 3.66
Lavagna, A., 3.3
Lavhaile, M., 3.73
Leao, S., 3.52, 6.14
Lenoir, O., 3.15, 3.18, 3.34, 3.61, 12.4
Leonard, M., 3.23, 3.48, 3.58
Liedtke, W.*, 11.1
Linna Dantas, J. V., 3.52
Lincenberc, G. M., 3.38, 3.39
Longaret, L., 3.1
Lucas, R., 3.86
Lynch, I. J., 3.16

M
Macceri, D., 3.1
Maguire, J.*, 1.1, 3.77
Magali-Martinez, A., 3.56, 4.2
 Majowicz, M., 3.3
Maniyanam, H., 3.79, 3.82
Mathar, S., 3.89
Matsukau, Y., 3.43, 3.44, 3.54, 3.76, 3.84
Matsurana, Y., 3.8
Mattos, S. L., 3.52
McPherson, K., 3.22, 6.4
Meller, S., 3.47, 3.86, 3.87
Meyer, M., 3.51
Milikowski, C., 3.67
Miller, B., 3.27
Miyasho, T., 3.50
Miyuchi, T., 3.43, 3.44, 3.45, 3.54, 3.76, 3.79
Miyuchi, Y., 3.45, 3.79, 3.85, 3.86, 10.4
Mizutani, T., 3.43, 3.44, 3.45, 3.83
Moorhouse, R., 3.15, 3.34, 3.61
Morales, V., 3.64
Morrell, N., 3.77
Mulaiwan, H. S., 3.53, 3.80, 3.81, 7.2

N
Naeije, R., 3.82
Nakayama, K., 3.53, 3.80, 3.81, 3.85, 3.86, 10.4
Nguyen, C., 3.48

O
Oftermanns, S., 3.31, 3.33
Oh, S. Y., 3.60
Okita, M., 3.8
Okazakia, O., 3.43
Okoli, L., 3.74, 6.10
AUTHOR INDEX

*Indicates Invited Speaker

Okunoren, O., 3.69
Okunoren-Oyekenu, Y., 3.69, 3.71, 6.3
Olawuyi, A., 3.69
Ortiz, M. C., 3.3
Ostrow, L., 3.65, 11.4
Ouard, S., 3.31, 3.32, 3.33

P
Pahuja, M., 3.78
Pais, G., 3.57, 3.72
Palygin, O., 3.27, 7.5
Paradis, P., 3.31, 3.32, 3.33, 5.2
Parkerson, J., 3.47
Petrov, F., 3.84
Pernow, J.*, 7.1
Pino, J., 3.68, 6.15, 12.3
Plotkin, H., 13.4
Pollheimer, J., 3.56
Pollock, J. S., 3.5, 3.6, 3.10, 3.19, 3.40, 3.47, 3.89
Prossnitz, E., 3.51
Puppala, A., 3.24
Puppala, B., 3.57, 3.58

R
Radcliff, A., 3.84
Rahman, A., 3.43, 3.44, 3.54, 3.76
Rehman Mian, M. O., 3.32
Rehman, A., 3.33
Remuzzi, G., 3.1
Remuzzi, G., 3.1
Riaekvam, W. N., 3.39
Rizzo, P., 3.1
Rosanò, L., 1.5, 3.49
Rothstein, J., 3.65
Russell, K., 3.65
Ryan, M., 3.62

S
Sabaa, N., 3.18
Saidu, K., 3.50
Sakai, S., 3.44, 3.45, 3.79, 3.82
Sangalli, F., 3.1
Santos Aragão, C. A., 3.52
Sanusi, A., 3.71
Sasser, J., 3.62
Satwiko, M. G., 3.80, 3.81, 10.1
Sawicki, S., 3.77
Schipper, E. L., 3.31, 3.32, 3.33
Schneider, A., 3.3
Schuette, N., 3.35
Schweig, L., 3.57, 3.58
Sedaka, R., 3.5, 6.7
Sedlakova, L., 3.9
Semprucci, E., 3.49
Sestito, R., 3.49
Sharma, S., 3.26
Shepard, C., 3.48
Shimojo, N., 3.43, 3.44, 3.45, 3.54, 3.76, 3.83, 4.3
Shin, D. M., 3.60
Shinkura, T., 3.85, 3.88
Skriv Anderson, P., 3.9
Solocinski, K., 1.2, 3.20
Son, G., 3.60
Sorokin, A., 3.27
Southwood, M., 3.77
Souza, W. B., 3.52
Speed, J., 3.6, 3.12, 3.13, 9.5
Spiesz, D., 3.22
Spradley, F., 3.11, 4.5
Statens, K., 3.27
Stauff, B., 3.35, 3.36, 3.37, 3.38
Stefanov, G., 3.57
Sullivan, J.*, 4.1
Sultara, S. N., 3.43, 3.44, 3.54, 3.76
Sun, C., 3.14, 3.19
Suzuki, Y., 3.50
Szabo-Johnson, A., 3.22
Zokolo, R. M., 3.3

T
Tajiri, K., 3.79
Tarnada, N., 3.85, 3.88
Tanaka, R., 3.8
Taylor, L., 3.22
Templeton, D., 3.36
Thanh, L., 3.24
Tharan, P.*, 3.15, 3.18, 3.34, 3.61, 13.3
Tiwari, S., 3.25
Tocci, P., 3.49
Tomasoni, S., 3.1
Townes, T. M., 3.14, 3.19
Traynor, B., 3.65
Trindade, M., 3.33
Tripathi, D., 3.25
Tsaboi, Y., 3.85

U
Uchide, T., 3.50
Uduma, O., 3.74

V
Valenzuela, J. P., 3.46
van den Meiracker, A. H.*, 8.1
Vanacekova, L., 3.9, 3.28
Vanourkova, Z., 3.9
Vatta, M., 3.64
Velicky, P., 3.56
Verma, A., 3.25
Vidensky, S., 3.65

W
Wakamatsu, K., 3.68
Wang, X., 3.59, 3.84
Ward, R., 3.63, 12.2
Weber, D., 3.4, 3.15, 3.34, 3.61
Welch, A., 3.16, 3.20
Williams, J. M., 3.22
Wingo, C., 3.16, 3.20, 9.4
Wu, S., 3.87
ANNUAL MEETING at
April 2-6, 2016 • San Diego, California

IMPORTANT DEADLINES
Abstracts: January 28, 2016
Housing: February 23, 2016
Advance Registration: March 1, 2016

400+ awards totaling over $1.2 million annually including EB travel awards!

www.apsebmeeting.org

The APS Institute on Teaching and Learning
June 20-24, 2016 • Madison, Wisconsin

IMPORTANT DEADLINES
Abstracts: March 4, 2016
Abstract Travel Award: March 11, 2016
Minority-based Travel Award: March 11, 2016
Advance Registration: May 5, 2016
Housing: May 5, 2016

the-aps.org/ITL

Meetings and Conferences
July–December 2016

Physiology 2016
July 29-31, 2016 • Dublin, Ireland

APS Conference: Inflammation, Immunity and Cardiovascular Disease
August 24-27, 2016 • Westminster, Colorado

APS Intersociety Meeting: The Integrative Biology of Exercise VII
November 2-4, 2016 • Phoenix, Arizona

For more information on APS meetings, please visit the-aps.org/Conferences
The APS Journals

Multiple Disciplines—One Physiology Collection

APS Publications: 15 distinguished scientific journals.

Biosis Previews • TRS • Web of Science • MEDLINE and PubMed: APS journal content is indexed through all of these excellent services.

HighWire: APS journals are hosted by HighWire Press, the leading ePublishing platform for high impact, peer reviewed content, with over 750 Science, Technology, and Medicine titles.

Website Design: Provides enhanced readability and discoverability of articles to improve research efficiency.

CiteTrack: Use your own criteria and key words to be notified of newly posted APS journal content.

AuthorChoice: Authors may purchase this option and have their articles publicly available upon publication.

eTOCs: Receive instant notification of new content.

RSS Feeds: Another great way to receive a notification of newly posted APS journal content.

Free Color: Regular or student members of APS who are first or last authors of articles in any of the APS research journals may be eligible for free color images.

Articles in Press: Newest research, published within days of acceptance.

Legacy Content: 100 years of scientific research from APS journals.

Journals Digital Library: The most economical way to purchase the complete collection of peer reviewed original research and review journals from the APS.

APSselect: Access to a collection of the "best of the best" newly accepted original research articles from the APS journals.

www.physiology.org

Manuscripts online within days of acceptance!

APS Journals

- American Journal of Physiology (AJP) consolidated — ajpc.org
- AJP—Cell Physiology — ajpcell.org
- AJP—Endocrinology and Metabolism — ajpendo.org
- AJP—Gastrointestinal and Liver Physiology — ajpgi.org
- AJP—Heart and Circulatory Physiology — ajpheart.org
- AJP—Lung Cellular and Molecular Physiology — ajplung.org
- AJP—Regulatory, Integrative and Comparative Physiology — ajpregu.org
- AJP—Renal Physiology — ajprenai.org
- Journal of Applied Physiology — japap.org
- Journal of Neuroscience — jn.org

- Advances in Physiology Education — http://advan.org
- Physiology — physiologyonline.org
- Physiological Reports — physiologicalreports.org
- Physiological Reviews — pr.org
- Physiological Genomics — physiolgenomics.org
- Comprehensive Physiology — comprehensivephysiology.com

Article Collection

APSselect — http://apsselect.physiology.org

American Physiological Society • Tel: 301-634-7180 • Fax: 301-634-7418
Email: publications@the-aps.org • Web: www.physiology.org
2015 APS Conference
Physiological Bioenergetics: From Bench to Bedside

APS Council

President
Patricia E. Molina

Past President
David M. Pollock

President-Elect
Jane F. Reckelhoff

Barbara T. Alexander
M. Harold Laughlin
Rudy M. Ortiz

John Chatham
Lisa Leon
Irene C. Solomon

David Guterman
Marshall H. Montrose
Bill J. Yates

Ex officio Members

Hannah V. Carey
Robert Hester
Curt Sigmund

Martin Frank
Kevin C. Kregel

Meredith Hay
Wolfgang Kuebler
J. Michael Wyss

Conference Organizers

Victor Darley-Usmar (Chair)
Univ. of Alabama at Birmingham

Sruti Shiva (Co-Chair)
Univ. of Pittsburgh

Shannon Bailey
Univ. of Alabama at Birmingham

Andreas Beyer
Med. Coll. of Wisconsin

Paul Brookes
Univ. of Rochester

Janine Santos
Natl. Inst. of Hlth.

Russell Swerdlov
Univ. of Kansas

Yisang Yoon
Georgia Regents Univ.

Acknowledgements

The Meeting Organizers and The American Physiological Society gratefully recognize the generous financial support from the following:

National Institute of General Medical Sciences, NIH

C3M
Center for Metabolism and Mitochondrial Medicine
University of Pittsburgh

Seahorse Bioscience
2015 APS Conference:
Physiological Bioenergetics: From Bench to Bedside
September 9—12, 2015, Tampa, Florida, USA

Week-At-A-Glance

<table>
<thead>
<tr>
<th>Wednesday, September 9</th>
<th>Thursday, September 10</th>
<th>Friday, September 11</th>
<th>Saturday, September 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM Registration</td>
<td>7:00 AM Registration</td>
<td>7:30 AM Registration</td>
<td>8:00 AM Registration</td>
</tr>
<tr>
<td>8:00—9:00 AM Symposia I</td>
<td>8:00—9:00 AM Symposia IV</td>
<td>9:00 AM—10:50 AM Symposia VII</td>
<td></td>
</tr>
<tr>
<td>Energy School I</td>
<td>Van Burelle</td>
<td>Mitochondrial Genetic and Metabolic Programs</td>
<td></td>
</tr>
<tr>
<td>Brad Hill</td>
<td>Afshan Malik</td>
<td>David Lee</td>
<td></td>
</tr>
<tr>
<td>Jianhua Zhang</td>
<td></td>
<td>Scott Ballinger</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Janine Santos</td>
<td></td>
</tr>
<tr>
<td>9:00 AM—11:30 AM Symposia II</td>
<td>9:00 AM—11:30 AM Symposia V</td>
<td>10:50—11:00 AM Closing Remarks</td>
<td></td>
</tr>
<tr>
<td>Mitochondria on the Move: Networking in Health and Disease</td>
<td>Mitochondrial Adaptation and Susceptibility to Stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yisang Yoon,</td>
<td>Paul Brookes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberta Gottlieb,</td>
<td>Nika Danial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyorgy Hajneczky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30 AM—12:30 PM Lunch</td>
<td>12:00 Noon—1:00 PM Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30 AM—12:30 PM Lunch</td>
<td>12:00 Noon—1:00 PM Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30—2:00 PM Plenary Lecture II</td>
<td>1:15—2:00 PM Plenary Lecture III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin Brand</td>
<td>Orian Shirihai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00—5:10 PM Welcome and Opening Remarks</td>
<td>5:00—5:30 PM Symposia III</td>
<td>2:20—4:30 PM Symposia VI</td>
<td></td>
</tr>
<tr>
<td>5:10—6:30 PM Plenary Lecture I</td>
<td>Translational Bioenergetics</td>
<td>It’s Not Just the ATP!</td>
<td></td>
</tr>
<tr>
<td>Doug Wallace</td>
<td>Victor Darley-Usmar</td>
<td>Signaling and Mitochondrial Function</td>
<td></td>
</tr>
<tr>
<td>John Lemasters</td>
<td>Sruti Shiva</td>
<td>Ben van Houten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Russ Swerdlow</td>
<td>Shannon Bailey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brian Dranka</td>
<td>Andreas Beyer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthony Molina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:30—8:30 PM Welcome and Opening Reception</td>
<td>5:30—7:30 PM Poster Session Social</td>
<td>5:00—7:00 PM Poster Session Social</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5:30—7:30 PM Poster Session Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:00—9:30 PM Banquet and Awards Ceremony</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GENERAL INFORMATION

Location:
The 2015 APS Conference: Physiological Bioenergetics: From Bench to Bedside will be held September 9—12, 2015 at the Westin Tampa Harbour Island Hotel, 725 South Harbour Island Blvd., Tampa, FL 33602, USA, telephone (813) 229-5000, FAX: (813) 229-5022.

Onsite Registration Hours:
Wednesday, September 9.............3:00—8:00 PM
Thursday, September 10...........7:00 AM—6:00 PM
Friday, September 11.............7:30 AM—6:00 PM
Saturday, September 12...........8:00—10:30 AM

On-Site Registration Fees:
APS Member..$650
APS Retired Member..$450
Nonmember..$800
Postdoctoral..$500
Student..$450
The registration fee includes entry into all scientific sessions, poster socials, opening reception, and the closing conference banquet*.
*Must have a ticket for entry.

Payment Information:
Registrants may pay by institutional or personal check, traveler’s check, MasterCard, VISA or American Express or in United States Dollars. Checks must be payable to “The American Physiological Society” and drawn on a United States bank payable in US dollars.

Student Registration:
Any student member or regularly matriculated student working toward a degree in one of the biomedical sciences is eligible to register at the student fee. Nonmember postdoctoral fellows, hospital residents and interns, and laboratory technicians do not qualify as students. Nonmember students who register onsite must provide a valid university student ID card. APS student members should present their current APS membership card indicating their student category status.

Postdoctoral Registration:
Any person who has received a Ph.D. degree in physiology or related field, within four years of this meeting, as attested to by the department head is eligible to register at the postdoctoral fee. A statement signed by the department head must accompany the registration form and remittance when registering.

Press:
Press badges will be issued at the APS registration desk, only to members of the working press and freelance writers bearing a letter of assignment from an editor. Representatives of allied fields (public relations, public affairs, etc.) must register as nonmembers.

Program Objective:
This meeting will serve as a cross disciplinary bridge, allowing the sharing of knowledge and the establishment of collaborations among investigators who may otherwise be confined within the discipline/pathology they study. Ultimately, the goals of this meeting are to advance the study of mitochondria, particularly in the realm of clinical studies and to catalyze collaboration/conversation across disciplines to understand the role of the mitochondrion in human health and disease.

Target Audience:
The goal of the “Physiological Bioenergetics—From Bench to Bedside” conference is to bring together experts studying varied facets of bioenergetics across disciplines and in the context of different pathologies to share their most recent findings and to discuss strategies to advance the field of “mitochondriology” into translational and clinical studies.

Photography is not permitted during the scientific sessions or in the poster room

Don’t forget to join us at the Welcome Reception directly after the Opening Plenary Session

Ballroom Foyer
6:30—8:30 PM
WEDNESDAY, SEPTEMBER 9, 2015

Plenary I

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:10 PM</td>
<td>1.1</td>
<td>Variants of Mitophagy: Type 1, Type 2 and Micromitophagy (Type 3).</td>
<td>John Lemasters.</td>
<td>Med. Univ. of South Carolina, Charleston.</td>
</tr>
</tbody>
</table>

Plenary II

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 PLENARY II</td>
<td>Thurs., 1:30—2:00 PM, Harbour Island Ballroom.</td>
<td>Sites of Production of Mitochondrial ROS: Mechanism and Physiological Function.</td>
<td>Martin Brand.</td>
<td>Buck Inst. on Aging.</td>
</tr>
</tbody>
</table>

THURSDAY, SEPTEMBER 10, 2015

Symposia I

ENERGY SCHOOL I

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 ENERGY SCHOOL I</td>
<td>Thurs., 8:00—9:00 AM, Harbour Island Ballroom.</td>
<td>Integrating Mitochondrial Activity Measurements with High Resolution Central Carbon Metabolomics Data.</td>
<td>Brad Hill.</td>
<td>Univ. of Louisville.</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>2.2</td>
<td>How to Measure Autophagy and Mitophagy.</td>
<td>Jianhua Zhang.</td>
<td>Univ. of Alabama at Birmingham.</td>
</tr>
</tbody>
</table>

Symposia II

MITOCHONDRIA ON THE MOVE: NETWORKING IN HEALTH AND DISEASE

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 AM</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10 AM</td>
<td>3.5</td>
<td>Knockdown of Voltage-dependent Anion Channels 1 and 2 Inhibits Mitochondrial Fission by Decreasing Binding of Dynamin-related Protein 1 to Mitochondria.</td>
<td>Eduardo Maldonado.</td>
<td>Med. Univ. of South Carolina, Charleston. (12.18).</td>
</tr>
<tr>
<td>11:25 AM</td>
<td>3.6</td>
<td>The Liver Molecular Circadian Clock in Chronic Alcohol-induced Mitochondrial Dysfunction.</td>
<td>Jennifer Valcin.</td>
<td>Univ. of Alabama at Birmingham. (7.3).</td>
</tr>
</tbody>
</table>

Symposia III

TRANSLATIONAL BIOENERGETICS

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:50 PM</td>
<td>6.7</td>
<td>High Intensity Training Increases Mitochondrial Respiratory Capacity in Old Males But Not Females.</td>
<td>Steen Larsen.</td>
<td>Univ. of Copenhagen, Denmark. (7.20).</td>
</tr>
<tr>
<td>5:05 PM</td>
<td>6.8</td>
<td>Mitochondria DNA is Damaged in Military Veterans with Fatiguing Conditions.</td>
<td>Yang Chen.</td>
<td>New Jersey Med. Sch., Rutgers Univ. (7.25).</td>
</tr>
</tbody>
</table>

Career Session

CAREER SESSION

Thurs., 12:30—1:30 PM, Harbour Island Ballroom.

- **Chair:** Brian Dranka, Seahorse Bioscience.

- **Session 4.0**
 - **12:30 PM** How to Succeed: A Research Scientist and Entrepreneur in Bioenergetics.
 - **Speaker:** Brian Dranka, Seahorse Bioscience.

Photography is not permitted during the scientific sessions or in the poster session room
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Poster Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSTER SESSION I</td>
<td>POSTER SESSION I</td>
</tr>
<tr>
<td>Thurs., 5:30—7:30 PM, Terrace.</td>
<td>Thurs., 5:30—7:30 PM, Terrace.</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>7.9 Withdrawn.</td>
<td>7.20 High Intensity Training Increases Mitochondrial Respiratory Capacity in Old Males but not Females. S. L. Larsen, T. D. Dohlmalm, D. S. Sogaard, F. D. Dela, and J. W. Helge. Univ. of Copenhagen, Denmark.</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
</tr>
</tbody>
</table>
FRIDAY, SEPTEMBER 11, 2015

Symposia IV

8.0 ENERGY SCHOOL II
Fri., 8:00—9:00 AM, Harbour Island Ballroom.

Chair: Brian Dranka, Seahorse Bioscience.

8:00 AM 8.1 The Lactic Acidosis Consortium: A Multidisciplinary Research Effort to Translate Gene Discovery into Better Management and Treatment for Patients with Mitochondrial Disorders. Yan Burell, Univ. of Montreal, Canada.

8:30 AM 8.2 Mitochondrial DNA Content: Accurate Measurement and Evaluation as an Early Biomarker of Mitochondrial Dysfunction. Afshan Malik, King's Coll., London, UK.

Symposia V

9.0 MITOCHONDRIAL ADAPTATION AND SUSCEPTIBILITY TO STRESS
Fri., 9:10—11:30 AM, Harbour Island Ballroom.

Chairs: Sruti Shiva, Univ. of Pittsburgh.
Andreas Beyer, Med. Coll. of Wisconsin.

9:10 AM 9.1 Withdrawn.

9:35 AM 9.2 A Unifying Hypothesis for the Mitochondrial Contribution to Ischemia-reperfusion. Paul Brookes, Univ. of Rochester.

10:00 AM Break

10:55 AM 9.4 Regulation of Bioenergetics and Angiogenic Response in Vasa Vasorum Endothelial Cells by Extracellular Purines and Hypoxia. Martin Lapel, Univ. of Colorado, Denver. (7.11).

11:10 AM 9.5 Increased Autophagy is Required for Mechanical Ventilation-induced Diaphragm Mitochondrial Dysfunction. Ashley Smuder, Univ. of Florida, Gainesville. (7.12).

Symposia VI

11.0 IT’S NOT JUST THE ATP! SIGNALING AND MITOCHONDRIAL FUNCTION
Fri., 2:20—4:30 PM, Harbour Island Ballroom.

Chairs: Janine Santos, Nail. Inst. of Environmental Hlth., Sci., Res. Triangle Park, NC.
Brad Hill, Univ. of Louisville.

2:45 PM 11.2 Tick, Tock: The Biological Clock Controls the Powerhouse. Shannon Bailey, Univ. of Alabama at Birmingham.

4:05 PM 11.6 Withdrawn.

Poster Session

12.0 POSTER SESSION II
Fri., 5:00—7:00 PM, Terrace.

Poster Board

27 12.1 Assessment of Peripheral Mitochondrial DNA Damage and Dysfunction as a Biomarker of Parkinson’s Disease. C. C. Corey, N. J. Jensen, E. H. Howlett, A. W. Weinstein, K. E. Erickson, J.
<table>
<thead>
<tr>
<th>Poster Board</th>
<th>Poster Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster Board</td>
<td>Poster Board</td>
</tr>
</tbody>
</table>
DAILY SCHEDULE

SATURDAY, SEPTEMBER 12, 2015

Symposium VII
13.0 MITOCHONDRIAL GENETIC
AND METABOLIC PROGRAMS
Sat., 9:00—10:50 AM Harbour Island Ballroom.

Chairs:
Martin Brand, Buck Inst. for Res. on Aging.
Shannon Bailey, Univ. of Alabama at Birmingham.

Closing Remarks
14.0 CLOSING REMARKS
Sat., 10:50—11:00 AM Harbour Island Ballroom.

Chairs:
Victor Darley-Usmar, Univ. of Alabama at Birmingham.
Sruti Shiva, Univ. of Pittsburgh.

NOTES

Thank you! Thank you! Thank you! for the generous support from

National Institute of General Medical Sciences, NIH

Seahorse Bioscience

University of Pittsburgh, Ctr. for Metabolism and Mitochondrial Medicine
2015 APS Conference
Physiological Bioenergetics: From Bench to Bedside

Abstracts of Invited and Contributed Presentations

1.0 Plenary I
2.0 Energy School I
3.0 Mitochondria on the Move: Networking in Health and Disease
5.0 Plenary II
6.0 Translational Bioenergetics
7.0 Poster Session I
8.0 Energy School II
9.0 Mitochondrial Adaptation and Susceptibility to Stress
11.0 It’s Not Just the ATP! Signaling and Mitochondrial Function
12.0 Poster Session II
13.0 Mitochondrial Genetic and Metabolic Programs

Author Index
sential to determine the roles of autophagy and mitophagy play in health and diseases. Autophagy and mitophagy has been shown to contribute to many disease pathogenic processes involved in a highly regulated and multi-step mechanism. Perturbation of autophagy, or mitophagy, removes damaged, effete and superfluous mitochondria and appears to have several distinct variants. During nutrient deprivation, proautophagic structures (PAS) grow into cup-shaped phagophores, or isolation membranes, that surround and sequester individual mitochondria into mitophagosomes, a process requiring phosphorylatedinsol-3-kinase (PI3K) and frequently occurring in coordination with mitochondrial fission. After sequestration in such Type 1 mitophagy, the outer compartment of mitophagosomes acidifies, followed only then by mitochondrial depolarization and ultimately hydrolytic digestion after fusion with lysosomes. Another variant of mitophagy occurs after photodamage to single mitochondria. Here, mitochondrial depolarization initiates mitophagy. Mitophagophores, however, seem to form by a different mechanism, namely by decoration of mitochondrial surfaces with LC3-containing structures. After coalescence of these presumably membranous structures, vesicular acidification and fusion with lysosomes occurs. By contrast to Type 1 mitophagy, this Type 2 mitophagy is not blocked by PI3K inhibition and is not associated with phagophore formation or mito- chondrial fission. Formation of mitochondria-derived vesicles (MDV) enriched in oxidized mitochondrial proteins that bud off and transit into multivesicular bodies represents a third form of mitophagy. Internalization of MDVs by invagination of the surfaces of multivesicular bodies followed by vesicle scission into the lumen is microautophagy, or more specifically micromitophagy (Type 3 mitophagy). Future studies are needed to characterize the molecular and biochemical similarities and differences between Types 1, 2 and 3 mitophagy.
bacterial loops, and homeostatic mechanisms in mitochondrial dynamics. In addition, the motility and fusion/fission components of mitochondrial dynamics are mutually coupled with each other in many paradigms. In this presentation, I will focus on the relevance and the mechanisms of the interactions of Ca^2+ and ROS with mitochondrial motility and fusion dynamics.

5.0 PLENARY II

5.1 SITES OF PRODUCTION OF MITOCNDRIAL ROS: MECHANISMS AND PHYSIOLOGICAL FUNCTION

Martin Brand

1Brand Lab, Buck Inst. for Res. on Aging, 8001 Redwood Blvd., Novato, CA, 94945.

Superoxide and H2O2 are generated at ten or more mitochondrial sites. Sites IIQo in complex III, IIF in complex I, and IIF in complex II have the greatest capacities in skeletal muscle mitochondria; site IF in complex I has low capacity. The rate of superoxide/H2O2 production at any site depends on its redox state, so we can assess rates at different sites from measured redox states. Surprisingly, in a substrate mix mimicking exercise, the rate was fivefold less and site I was dominant, with contributions from IIF and IIQo. In medium mimicking contracting muscle, the total rate was variable, but site I was dominant, with contributions from IIF, IIQo, and IIQ1. Tissue mitochondria assayed ex vivo under conditions mimicking rest and exercise. J Biol Chem 290, 209-227. Orr et al. (2013) Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radic Biol Med 65, 1047-1059. Orr et al. (2015) Suppression of superoxide production from mitochondrial complex III. In revision.

6.0 TRANSLATIONAL BIOENERGETICS

6.1 MEASURING BIOENERGETIC HEALTH IN HUMAN POPULATIONS

Victor Darley-Usmar

1Mitochondrial Med. Lab., Univ. of Alabama at Birmingham, 901 19th St. S., Birmingham, AL, 35294.

Bioenergetics is now at the forefront of our understanding of pathological mechanisms, new therapies and as a biomarker for the susceptibility of disease progression in metabolic diseases, neurodegeneration, cancer and cardiovascular disease. A key concept is that the mitochondrial condition can act as the “canary in the coal mine” by serving as an early warning of bioenergetic crisis in patient populations. Furthermore, cellular mitochondrial function is known to vary between populations due to differences in genetic background and in response to lifestyle changes including diet and exercise. It is clear that we urgently need new clinical tests to monitor changes in bioenergetics in patient populations. This is now possible due to the development of high-throughput assays to measure cellular energetic function in the small numbers of cells that can be isolated from human blood or from tissue biopsy samples. The sequential addition of well characterized inhibitors of oxidative phosphorylation allows a bioenergetic profile to be measured in cells isolated from normal or pathological samples. This profile can define the extent to which these cells utilize mitochondrial oxygen consumption to produce ATP, are using proteos for other processes or leak and the maximal respiration. Non-mitochondrial oxygen consuming pathways are also measured and are likely indicative of a pro-inflammatory state. Taken together we propose these parameters are a measure of bioenergetic health of a cell population. We therefore propose the development of the Bioenergetic Health Index (BHI), which is a single value that defines bioenergetic health based upon the analysis of cellular mitochondrial profiles in cells isolated from human subjects. Ultimately, BHI has the potential to be a new biomarker for assessing patient health or (for) both prognostic and diagnostic value.

6.2 PLATELET MITOCHONDRIA: FROM BIOMARKER TO BIOLOGICAL MECHANISM

Sunita Shiva

While it is well established that bioenergetic dysfunction plays a role in the pathogenesis of numerous diseases, mitochondrial dysfunction remains underexplored in many patient populations because of the invasiveness of obtaining tissue for mitochondrial studies. Platelets are easily accessible and have long been recognized to contain fully functional mitochondria. However, it remains unclear whether platelets harbor the bioenergetic dysfunction observed in other organ systems during pathology or whether mitochondrial dysfunction contributes to platelet pathology. We hypothesize that platelet bioenergetics can serve as a biomarker of specific diseases in which mitochondrial function regulates platelet thrombotic and inflammatory function. We have recently shown that patients with Sickle Cell Disease have altered platelet bioenergetics due to an inhibition of mitochondrial complex V, leading to increased membrane potential and augmented reactive oxygen species (ROS) production. We have shown that this increased ROS directly leads to platelet activation. We now extend this study to determine if platelet mitochondrial function is differentially altered in other disease cohorts including asthma, pulmonary hypertension, Parkinson's Disease and cardiac arrhythmias. We show data demonstrating differential bioenergetic profile in patients with each of these pathologies and discuss the role of this altered mitochondrial function in disease progression.

6.3 MITOCNDRIAL BIOMARKERS FOR NEURO-DEGENERATIVE DISEASES

Russell Swerdlow

1Neurology, Univ. of Kansas, MS 6002, 4350 Shawnee Mission Pkwy., Fairway, KS, 66205.

Mitochondrial dysfunction is observed across a spectrum of neurodegenerative diseases. This raises the question of whether mitochondrial-based biomarkers could be used to reveal the presence of disease or pre-disease, endophenotype states, and whether mitochondrial biomarkers could be used to guide the development of new therapies. Approaches with the ability to interrogate brain bioenergetics currently exist, although these approaches have limitations and more comprehensive and practical ways to assess brain mitochondrial function are needed. Interestingly, mitochondrial changes similar to those observed in the brains of patients with some neurodegenerative diseases are also detected in peripheral tissues, which suggests the possibility that mitochondrial function in peripheral tissues may be able to function as a surrogate for brain mitochondrial function. We have previously considered different options for the assessment of brain mitochondrial and brain bioenergetics, as they pertain to studies of diagnosis, pathophysiology, and drug target engagement. When it comes to assessing these parameters, we are further considering the opportunities and limitations of adapting measures of peripheral tissue mitochondrial function and bioenergetics. (NIH P30AG035982; R01NS077852; R01FD003739; PCTR-15-330495). Reference: Swerdlow RH. Bioenergetic Medicine. BJP 2014;171:1854-1869.

6.5 USING MACHINE LEARNING TO ADVANCE BLOOD BASED BIOENERGETIC PROFILING: A FOCUS ON GERIATRIC HEALTH

Anthony Molina

Blood based bioenergetic profiling is recognized to have potential diagnostic and prognostic applications. In primates, we have observed that the respirometric profile of blood cells can recapitulate the bioenergetic capacity of other tissues such as skeletal muscle. Our studies in older adults indicate that the respiratory capacity of PBMCs is associated with multiple measures of physical function, including: gait speed, Short Physical Performance Battery score, upper and lower body strength, and muscle quality. These physical function measures are recognized to be excellent predictors of morbidity and mortality in this age group. PBMCs are comprised of multiple cell types and do not encompass all cells accessible for blood based profiling. It is likely that different cell types and respirometric parameters will have variable utility with regard to prognostic and diagnostic applications. To address this, we are utilizing Machine Learning methods designed for high dimensional data analysis to identify respirometric signatures and patterns across multiple cell types that are most closely associated with clinical outcomes. This branch of artificial intelligence utilizes algorithms that can be trained by example to distinguish between groups or predict outcomes. Random Forests is an ensemble learning approach that can build powerful predictive models and detect subtle multivariate gait patterns. The strengths of this approach are: it does not over fit; it is robust to noise; it estimates error rates; it provides indices of variable importance; it works with mixes of continuous and categorical variables; it can be used for data imputation and cluster analysis; and it can deal with issues stemming from a large number of variables and a small sample size.
7.1 TRANSGENIC REDOX-INDICATOR MICE EXPRESSING CYTOSOLIC AND MITOCHONDRIAL ROGFP1

Kerstin Wanner1, Benedikt Kolbrink1, Karolina Can1, Belinda Kempkes1, and Michael Müller1

1Neuro/ Sinnesphysiologie, Univ. Göttingen, Humboldtallee 23, Göttingen, D-37073, Germany.

Reactive oxygen species (ROS) and related redox changes contribute to cellular signaling and are linked to neuropathology and mitochondrial dysfunction. For long, redox imaging was limited by a lack of reliable optical probes. Genetically-encoded, fluorescent protein derived optical redox sensors bridge this gap. Demand is, however, the delivery of coding DNA to the tissue of interest. This requires transfection/transduction of cultured preparations or viral injections into each individual animal. To extend reliable redox imaging to adult and complex preparations while circumventing surgical procedures, we generated transgenic redox indicator mice. They express roGFP1 under the Thy1 promoter in the cytosol or the mitochondrial matrix almost throughout the brain. NeuN labeling confirmed neuronal expression of cytosolic and mitochondrial roGFP1, and Mitotracker staining verified its proper targeting to mitochondria. RoGFP1 is functional at all postnatal stages; any negative effects of the transgene can be ruled out. Detailed response calibrations of roGFP1 allow for a robust and reliable look at redox changes at different stages. In conclusion, roGFP1 mice are valuable to analyze ROS/redox signaling in various neuronal disorders, degenerative conditions, and mitochondrial morphology.

7.2 EFFECTS OF SKELETAL MUSCLE AGING ON MITOCHONDRIAL MORPHOLOGY AND DYNAMICS

Jean-Philippe Leduc-Gaudet1, Martin Peard2, Felix S-Jean Pelletier1, Nicolas Sgarbi1, Marie-Kellie Auclair1, Joanne Valle1, Richard Robitaille1, David H St Pierre3, and Gilles Gosselin1

Background: Skeletal muscle aging is associated with a progressive decline in muscle mass and strength, a process named sarcopenia. Strong evidence points towards a causal role played by accumulation of mitochondrial dysfunctions in the development of sarcopenia, a process that could be triggered by impaired mitophagy. It is now recognized that mitochondrial function, mitophagy and mitochondrial morphology are interconnected. However, the impact of muscle aging on mitochondrial morphology remains unknown. Method: To address this issue, we assessed the morphology of Subsarcomemmal (SSm) and Mitochondria in skeletal muscle of young (8-12wk-old) and old mice (88-96wk-old) using a quantitative transmission electron microscopy approach. Protein contents of OPA1, Mfn1, Mfn2, Drp1 and key protein of the oxidative phosphorylation system were quantified in muscle homogenates using western blots. Results and Conclusions: We show that aging-related muscle atrophy is associated with larger and less circular SSm, and more complex (increased length and branching) Mitoch. In line with these morphological changes, and although no difference in the content of proteins regulating mitochondrial dynamics (Mfn1, Mfn2, Opa1 and Drp1) was observed, a mitochondrial fusion index (Mfn2-to-Drp1 ratio) was significantly increased in aged muscles. Our results reveal that muscle aging is associated with complex changes in mitochondrial morphology that could interfere with mitochondrial function and mtDNA integrity, and thus contribute to aging-related accumulation of mitochondrial dysfunction and sarcopenia.

7.3 THE LIVER MOLECULAR CIRCADIAN CLOCK IN CHRONIC ALCOHOL-INDUCED MITOCHONDRIAL DYSFUNCTION

Jennifer Vaïk3, Udoah Udoli3, Telisha Swain3, Claudia Oliveira2, and Shannon Bailey4

Pathology, Univ. of Alabama at Birmingham, 1670 University Blvd., Volker Hall, Birmingham, AL, 35294, 3Neurology, Univ. of Alabama at Birmingham, 1824 6th Ave. S., Wallace Tumor Inst., 401, Birmingham, AL, 35233.

Mitochondrial bioenergetics is compromised by alcohol consumption. Studies suggest that hepatic beta oxidation is regulated by clock-controlled rhythms in protein acetylation. The extent to which these or other mitochondrial processes are clock regulated is unknown. To determine the interaction of the clock and alcohol on mitochondrial function we used a model of hepatocyte clock dysfunction; hepatocyte-specific Bmal1 knockout (HBK) mice. HBK and wild type (WT) mice were kept under a 12:12 h L-D cycle and fed control and alcohol-containing diets. Livers were collected every 4h for 24h. Data showed that mtDNA content was rhythmic in liver of control WT mice, and Pgc1a and Nrf2 were rhythmic in WT, but not HBK liver. These results suggest that mitochondrial content and bioenergetics are regulated by the clock. Diurnal rhythms in Pgc1a, Pgc1b, Pdk4, and Sir3 were decreased in livers of alcohol-fed mice. Activity of cytochrome c oxidase (CoO) was rhythmic in livers of control mice with peak activity in the dark-active phase. Notably, the CoO rhythm was lost in livers of alcohol-fed mice. In summary, these results support the idea that mitochondria adapt to changing metabolic demands of the cell during the day by clock-regulated mechanisms. Conversely, the lack of flexibility in mitochondrial metabolism in alcohol-exposed liver may lead to bioenergetic stress. Thus, a failure in clock-driven adaptive processes in mitochondrial function contributes to alcoholic liver disease.

7.4 RETT SYNDROME PROVOKES A CYTOSOLIC AND MITOCHONDRIAL REDOX IMBALANCE IN NEONATAL NEURONS

Karolina Can1,dish Tolk1, Christiane Menzel1, Sebastian Kügler1, and Michael Müller1

Rett syndrome is a neurodevelopmental disorder associated with mitochondrial impairment and redox imbalance. Mitochondria of MeCP2-deficient (MeCP2-/-) mouse brain are partly uncoupled and show increased respiratory rates. Previously, we confirmed more oxidized baseline conditions and exaggerated responses of MeCP2-/- hippocampus to redox challenge. To unveil the molecular causes of this imbalance, we generated viral vectors expressing the redox sensor roGFP1 in cytosol or mitochondrial matrix of neurons. This probe responds to oxidation/reduction and enables quantitative live-cell imaging of subcellular redox dynamics. Genotypic differences were evident in organotypic slices; both mitochondria and cytosol showed more oxidized redox baselines in MeCP2-/- neurons. Blocking superoxide dismutase caused a less intense oxidation in MeCP2-/- cytosol and mitochondria, suggesting a decreased efficiency of this scavenging enzyme. Challenge by H2O2 and severe hypoxia elicited loss of control WT mice, and Pgc1a and Nrf2 were rhythmic in WT, but not HBK liver. These results suggest that mitochondrial content and bioenergetics are regulated by the clock. Diurnal rhythms in Pgc1a, Pgc1b, Pdk4, and Sir3 were decreased in livers of alcohol-fed mice. Activity of cytochrome c oxidase (CoO) was rhythmic in livers of control mice with peak activity in the dark-active phase. Notably, the CoO rhythm was lost in livers of alcohol-fed mice. In summary, these results support the idea that mitochondria adapt to changing metabolic demands of the cell during the day by clock-regulated mechanisms. Conversely, the lack of flexibility in mitochondrial metabolism in alcohol-exposed liver may lead to bioenergetic stress. Thus, a failure in clock-driven adaptive processes in mitochondrial function contributes to alcoholic liver disease.
Existing data suggest relationships exist between mitochondrial function, APP processing, and Alzheimer’s disease (AD). In the current study, we aimed to examine the relationship between mitochondrial function, cell bioenergetics, and AD. We could enhance our understanding of AD. To test the impact of bioenergetics on APP processing we measured APP mRNA, APP protein, and APP derivatives (soluble APPs, sAPPs; APP) in human neuronal SH-SYSY cells with different bioenergetic manipulations. These manipulations include depletion of mitochondrial DNA (ρ0), glycolysis inhibition (2-deoxyglucose; 2DG), and varying medium glucose concentrations (0, 2.5, 25 mM). Endpoints were measured at 24 and 72 hours for the 2DG and variable glucose experiments. The effects of these manipulations on respiration and glycolysis were determined using a Seahorse XF24 analyzer. Relative to SH-SYSY cells, SH-SYSY ρ0 cells (which have a high glycolysis flux and negligible respiratory chain flux) had comparable full-length APP protein and mRNA levels, but lower medium sAPPs and APP levels. At both the 24 and 72 hour time points, 2DG treatment reduced glycolysis with no change in respiration. At 24 hours no changes were observed with any APP processing endpoints following 2DG treatment. At 72 hours, the 2DG treatment showed unchanged APP mRNA levels, reduced full length APP protein, medium sAPPs and APP levels. Relative to cells maintained at a high glucose level (25 mM), 0 mM glucose showed reduced glycolysis and increased respiration, while cells in 2.5 mM glucose showed increased respiration and comparable glycolysis. At 24 hours, cells maintained in 0 and 2.5 mM glucose had reduced medium sAPPs, but all other endpoints were unchanged. With 0 mM glucose, APP mRNA was unchanged, full length APP protein and medium sAPPs were reduced, while medium APP levels were increased at 72 hours. Cells maintained in 2.5 mM glucose appeared to show intermediate changes to APP endpoints. Results suggest that energy significantly affects cells reduce APP, or alter processing, compartmentalization, or solubility of APP and its derivatives. Results from ρ0 cells are perhaps more consistent with this latter view. Experiments to resolve these questions are underway.

7.6 MODULATION OF MITOCHONDRIAL ADENINE NUCLEOTIDE TRANSCASE (ANT) REGULATION WITH AGEING

Philippe Diolé1, Isabelle Bornard-Marchassier2, Philippe Pascoli3, Dominique Delattre4, Richard Rouleau5, Gaëlle Calmettes6, and Gilles Goussipoulou7

1INSERM U1045 & IHH LIRYC l’Institut de Rythmologie et Modélisation Cardiaque, Univ. de Bordeaux, PTIB, Hosp. Xavier Amozon, Av. du Haut Lévézé, Pessac, 33604, France, 2Pôle de Gérontologie Clinique, CHU de Bordeaux, Univ. de Bordeaux & UMR 5536 CNRS, Bordeaux, 33600, France, 3IHH LIRYC l’Institut de Rythmologie et Modélisation Cardiaque, Univ. de Bordeaux, PTIB - Hopital Xavier Amozon, Av. du Haut Lévézé, Pessac, 33604, France, 4UMR 5536 CNRS, Bordeaux, Univ. de Bordeaux, Bordeaux, 33600, France, 5Dept. of Med. (Cardiology), David Geffen Sch. of Med., Univ. of California, Los Angeles, CA, 90095-1679, 6Dépt. de Physiologie, Univ. de Québec à Montréal, Montréal, QC, H2X 2C9, Canada.

By studying bioenergetic parameters (oxidation and phosphorylation rates, membrane potential) in isolated mitochondria from aged rat muscle (gastronemius) we observed a decrease in mitochondrial affinity for ADP, and a change in ANT response to atractyloside1. These age-induced modifications of ANT result in an increase in the ADP concentration. Because of the importance of mitochondrial ROS as therapeutic targets, we considered that ageing may be the result of oxidative damage caused by ROS and may appear as a decrease in mitochondrial ROS. To test this hypothesis, we determined the mitochondrial ROS levels in the gastrocnemius muscle of young and aged (14 months) rats. The results showed that the mitochondrial ROS levels were increased at 72 hours. Cells maintained in 2.5 mM glucose appeared to show intermediate changes to APP endpoints. Results suggest that energy significantly affects cells reduce APP, or alter processing, compartmentalization, or solubility of APP and its derivatives. Results from ρ0 cells are perhaps more consistent with this latter view. Experiments to resolve these questions are underway.

7.7 MITOCHONDRIAL RESERVE CAPACITY IS DRIVEN BY GLUTAMINE IN LUNG CANCER CELLS WITH MESENCHYMAL PHENOTYPE

Yanyuan Si1, Danielle B. Ulane1, Jonathan B. Hurov1, Marion Dorsch1, and Kevin Marks1

1Biology, Agios Pharmaceuticals, 88 Sidney St, Cambridge, MA, 02139.

Metastasis is the main cause of cancer mortality, and its initiation is enabled by a process known as the epithelial-to-mesenchymal transition (EMT). It is desirable to identify specific drug targets for cancers with mesenchymal phenotype. Previously we have shown that lung cancers with mesenchymal phenotype are more sensitive to inhibition of glutaminase (GLS). As EMT can lead to changes in both the glycolytic and glutaminolytic pathways, we sought to investigate the importance of these fuels for mitochondrial respiration, and to understand the impact of GLS inhibition on mitochondrial function. We developed a cell-based assay to profile substrate preference under basal and FCCP-stimulated conditions. We first showed that transforming growth factor beta 3 (TGFβ3)-induced EMT was accompanied by the loss of glucose-driven reserve capacity. As a result, small molecule inhibition of GLS abolished reserve capacity and blocked proliferation in a TGFβ3-induced mesenchymal line without affecting the epithelial parental line. We further applied this assay to a lung cancer cell line panel, and demonstrated that cell lines with high sensitivity to GLS inhibitor were solely dependent on glutamine-driven reserve capacity. Taken together, our data demonstrate EMT is associated with a change in substrate utilization for mitochondrial reserve capacity in lung cancer cells, and reserve capacity may play a key mechanistic link between GLS inhibition and impaired cell proliferation.

7.8 L-OPA1 FUNCTIONS INDEPENDENTLY OF S-OPA1 BY FORMING SEPARATE STRUCTURAL ENTITIES

Hak-Jo Lee1, and Yisang Yoon1

1Physiology, Georgia Regents Univ., 1120 15th St, Augusta, GA, 30912.

Optic atrophy 1 (OPA1) is a dynamin-related GTPase mediating mitochondrial fusion and cristae remodeling. Loss of OPA1 has been shown to cause defects in inner membrane fusion and oxidative phosphorylation (OXPHOS). OPA1 is expressed in multiple splice variants produced by alternative splicing at the N-terminal exons downstream of a transmembrane (TM) domain. These splice variants undergo partial or full proteolytic cleavage depending on exon inclusion or alternative mRNA splicing at the N-terminus. To better understand the biochemical and structural properties of OPA1 isoforms, we investigated the role of OPA1 isoforms in the mitochondria of OPA1-KO mouse embryonic fibroblasts (MEFs) and examined their capacity to restore OXPHOS function and mitochondrial fusion. We found that, while OPA1-KO cells failed to grow in galactose medium which forces cells to use OXPHOS to generate ATP, expression of L-OPA1 or S-OPA1 alone was sufficient to support cell growth in galactose medium. Similarly, L-OPA1 or S-OPA1 alone restored respiration in OPA1-KO MEFs. Analyses of respiration complexes using blue-native gel electrophoresis (BNGE) indicated that OPA1-KO cells showed greatly diminished levels of complexes III, IV, and V, which was restored by L- or S-OPA1 alone indistinguishably. However, we observed that L-OPA1 was more effective than S-OPA1 in inducing mitochondrial elongation when fusion was inhibited, similar to previous observations in the conditions of nutrient starvation or cycloheximide treatment. Interestingly, analyses of oligomeric state of L- and S-OPA1 showed that, while non-cleavable L-OPA1 formed mostly hexamers, the majority of S-OPA1 was in dimers. In wild-type cells and cells expressing a cleavable L-OPA1 in OPA1 KO cells, L- and S-OPA1 also exhibited similar hexameric and dimeric patterns, respectively, as seen in 2-dimensional gel electrophoresis (BNGE followed by SDS-PAGE). These results suggest that although L-OPA1 is required for mitochondria fusion, cristae maintenance for proper OXPHOS function can be supported by S-OPA1 or L-OPA1 alone.
7.11 REGULATION OF BIOENERGETICS AND ANGIGENIC RESPONSE IN VASA VASORUM ENDOTHELIAL CELLS BY EXTRACELLULAR PURENS AND HYPOXIA

Venasia Gerasimovskaya 1,2

1Pediatrics, Univ. of Colorado Denver, 12700 E. 19th Ave., Bldg. RC-2, Aurora, CO, 80045, 2Integrative Physiology, Univ. of Colorado, Boulder, 354 UCB, Boulder, CO, 80309, Med, Univ. of Colorado, Denver, 12700 E. 19th Ave., Aurora, CO, 80045, Pediatrics, Univ. of Colorado, Denver, 12700 E. 19th Ave., Bldg. RC-2, Aurora, CO, 80045, Pediatrics, Univ. of Colorado, Denver, 12700 E. 19th Ave., Bldg. RC-2, Aurora, CO, 80045

Cell proliferation is an energy taxing process, however, both the role of cellular metabolism in angiogenic endothelial cells and the regulation of cellular energy pathways by extracellular stimuli remain unexplored. Extracellular purens are widely accepted as important regulators of endothelial cell function. Our group has previously shown their autocrine/paracrine role in pulmonary artery vasa vasorum angiogenesis in a newborn model of hypoxic pulmonary hypertension. By using glycolytic and mitochondrial respiratory inhibitors, in this study we demonstrate that glycolysis and oxidative phosphorylation (OXPHOS) are both vital for ATP-stimulated vasa vasorum endothelial cell (VVEC) mitogenesis. We also showed that VVEC isolated from control animals exhibited higher rates of OXPHOS compared to those isolated from chronically hypoxic purens. Measurement of OXPHOS in digitonin-permeabilized VVEC showed that chronic hypoxia both in vivo and in vitro significantly decreased basal, Complex I and Complex II mitochondrial respiration. Additionally, F68 ATP-synthase beta subunit and Cytochrome C oxidase subunit IV expression levels were decreased, suggesting persistent hypoxia-induced phenotypical changes in VVEC bioenergetics. Cells cultured 7 days in Galactose [20mM] and Glucose [5mM] displayed augmented intracellular ATP production along with a significant increase in basal and maximal respiration rates. Furthermore, a one-hour nucleotide treatment [100mM] increased maximal respiration rates under said conditions. Interestingly, glycolysis experiments displayed a unique response to oligomycin [0.4,0.8,1 & 2uM] wherein a decrease in extracellular acidification rate (ECAR) was observed despite exposure time [1,4,8 & 24h]. ATP stimulation increased ECAR while 2-deoxyglucose (2DG) also yielded an unorthodox response resulting in a marked decrease in ECAR followed by immediate recovery to pre-injection levels within 10 minutes. In parallel, lactate measurements showed an insignificant increase in response to oligomycin, while ATP concentrations spiked at the 4 hour mark in control and hypoxic VVEC not coinciding with OXPHOS changes. Finally, consistent with observed increases in OXPHOS rates, ATP was shown to induce a transient increase in [Ca2+] in VVEC mitochondria. Therefore, purinergic and metabolic regulation of VVEC energy pathways represents a novel strategy for the treatment of vasa vasorum pathologic angiogenesis in hypoxic pulmonary hypertension.

Funding: R01 HL086783 (E.V. Gerasimovskaya).

7.12 INCREASED AUTOPHAGY IS REQUIRED FOR MECHANICAL VENTILATION-INDUCED DIAPHRAGM MITOCHONDRIAL DYSFUNCTION

Ashley J. Smader 1, Kurt J. Solladie 1, W. Bradley Nelson 1, Kasuk Min 1, Erin E. Talbert 1, and Scott K. Powers 1

1Applied Physiology & Kinesiology, Univ. of Florida, PO Box 118206, Gainesville, FL, 32608

Mechanical ventilation (MV) is a life-saving intervention for patients in respiratory failure. However, prolonged MV results in diaphragm weakness. While the mechanisms controlling MV-induced diaphragm atrophy are not fully elucidated, it has been demonstrated that mitochondrial function plays an important role in regulating skeletal muscle mass. Evidence in mechanically ventilated patients indicates that the autophagy lysosomal proteolytic pathway is upregulated in the diaphragm. However, it is unknown if MV-induced increased autophagy occurs as a protective mechanism to damage dysfunctions in mitochondria or if increased autophagy exacerbates mitochondrial dysfunction. Therefore, these experiments were designed to determine the effects of accelerated autophagy on diaphragm mitochondrial function during MV. Cause and effect was determined by inhibiting MV-induced autophagy via adeno-associated virus overexpression of mutated autophagy-related protein 5 (ATG5) in the diaphragm of rats. Our results reveal that inhibiting autophagy prevented the MV-induced reduction in mitochondrial oxygen consumption. Further, transduction of mutated ATG5 prevented MV-induced increase in both mitochondrial ROS emission and capase-3 activation. Finally, inhibiting autophagy prevented MV-induced increased expression of PINK1 and the fission/fusion proteins OPA1 and DLP1. Therefore, our data indicate inhibition of MV-induced autophagy is sufficient to protect against diaphragm mitochondrial dysfunction. Supported by NIH R21 AR064956 awarded to SKP.
7.14 MITOCHONDRIAL CHAPERONE GRP75 HAPLOIN-SUFFICIENCY PROMOTES LIVER TUMORIGENESIS BY ADAPTED METABOLISM

Yan Wang1, Xiongjie Jie1, Nihal Mirvish1, and Demetrios Moskophidis1

1Molecular Med., Georgia Regents Univ., 1120 15th St., Augusta, GA, 30912
2Cancer Ctr., Georgia Regents Univ., 1120 15th St., Augusta, GA, 30912

The reprogramming of energy metabolism is one of the hallmarks of cancer; however, underlying mechanism of mitochondria’s role in tumorigenesis remains unclarified. To determine whether and how mitochondria attributes to tumorigenesis, we investigated the effects of genetic inactivation of GRP75, a mitochondrial HSP70 chaperone, using a well-established cancer mouse model in which injection of pre-carcinogen diethylnitrosamine (DEN) at 15 days of age induces liver tumor within 7 months with a 100% prevalence. Our study revealed that hepatocytes of grp75+/– mice, compared to grp75+/+ (WT) controls, exhibited distinct metabolic alterations associated with a lower respiratory capacity (oxygen consumption rate), higher glycolysis, decreased mitochondria membrane potential (MMP), and higher ROS production. Although both strains were sensitive to DEN-induced liver tumorigenesis, the grp75+/– mice exhibited higher tumor burdens and accelerated tumor growth. Thus, partial inactivation of GRP75 promotes liver tumorigenesis by causing mitochondrial dysfunction, increasing ROS production, and engaging metabolic adaptive pathways promoting malignant transformation. Further detailed studies on the metabolic and molecular signaling pathways driving tumor progression in grp75+/– mice might provide potential targets for liver cancer treatment. Funding resources: The research was supported from the National Institutes of Health CA121951 (D.M.) and CA062130 (N.M.).

7.15 MITOCHONDRIAL ENERGY DEFICIENCY LEADS TO HYPERPROLIFERATION OF SKELETAL MUSCLE MITOCHONDRIA AND ENHANCED INSULIN SENSITIVITY

Ryan Morrow1, Martin Picard1, Olaas Derbeneva1, Jeremy Leipziger2, Gilles Gosselin1, Russell Hepple3, and Douglas Wallace1

2Dept. of the sciences of the Activite Physique, Univ. du Quebec a Montreal, 141, Ave. du President Kennedy, Montreal, QC, H2X 1Y4, Canada
3Dept. of Kinesiology & Physical Edu., McGill Univ., 475 Pine Ave. W., Montreal, QC, T2N 1J4, Canada

Mitochondrial dysfunction is known to be associated with type II diabetes, but whether it is a cause or consequence is still unknown. The adenine nucleotide translocase (ANT1) is a mitochondrial protein that exchanges cytosolic ADP for ATP produced by oxidative phosphorylation. Previous studies have shown that mice deficient in ANT1 have reduced muscle mitochondrial function and develop cardiac hypertrophy. Our goal was to study the relationship of mitochondrial energy production to insulin sensitivity by using Ant1–/– and Ant1+/+ mice fed a high fat diet. The deletion of Ant1 resulted in a hyperproliferation of dysfunctional mitochondria in the gastroc...
HIGH INTENSITY TRAINING INCREASES MITOCHONDRIAL RESPIRATORY CAPACITY IN OLD MALES BUT NOT FEMALES

Steen Larsen,1 Tine Dohlmann,1 Ditte Søgaaard,1 Flemming Dele1, and Jørn W. Steen Larsen1, Tine Dohlmann1, Ditte Søgaaard1, Flemming Dele1, and Jørn W. Steen Larsen1
1Dept. of Biomedical Sci., Univ. of Copenhagen, Blegdamsvej 3B, Bldg. 12, 4. Fl., Copenhagen, 2200, Denmark, Xib, Chr. for Healthy Aging, Dept. of Biomedical Sci., Fac. of Hlth. Sci., Univ. of Copenhagen, Denmark.

High intensity training (HIT) has been shown to increase maximal oxygen uptake (VO2max) and mitochondrial oxidative phosphorylation (OXPHOS) capacity in young subjects. The objective of the study was to investigate the effect of six weeks of HIT in older male and females, to see if the response is similar to what is seen in young subjects and if the improvement is similar between genders. This training intervention has never been investigated in old subjects before. Old obese males (n=10; age: 64±2 years; BMI: 31±1 kg/m2) and females (n=9; age: 64±1 years; BMI: 31±1 kg/m2) were recruited for the study. OXPHOS capacity was measured in perma-

bilarized skeletal muscle fibers and subcutaneous abdominal adipose tissue before and after six weeks of supervised HIT training (3 times per week; 5 times 1 minute at approximately 125% of VO2max) using high-resolution respirometry (Oxygraph-3k, Austria). The following protocol was used: Malate, glutamate, ADP (CI+II), succinate (CI+III) and FCCP (ETS). VO2max, glycated hemoglobin (HbA1c) and body composition was measured as well. Males increased VO2max after HIT (P=0.009), with no difference seen in females. Body composition was similar in females after HIT, whereas males reduced their body fat percentage. HbA1c increased in females and decreased in males after HIT. No difference was seen at baseline between males and females in skeletal muscle OXPHOS capacity with the three different substrate / uncoupler combinations (C1+II, C1+III, ETS). Six weeks of HIT did not change OXPHOS capacity in females (C1: 24±1 vs. 23±1; C1+II: 60±3 vs. 66±5; ETS: 71±2 vs. 76±5 pmol/mg/sec), whereas males increased OXPHOS capacity (C1: 22±2 vs. 28±3; C1+II: 62±4 vs. 86±8; ETS: 70±4 vs. 94±8 pmol/mg/sec). OXPHOS capacity in adipose tissue was higher at baseline in males compared with females (C1: 0.50±0.05 vs. 0.36±0.03; C1+II: 1.71±0.11 vs. 1.30±0.08; ETS: 1.91±0.11 vs. 1.41±0.12 pmol/mg/sec, respectively), the training intervention did not change OXPHOS capacity in either of the genders. In conclusion old males increase VO2max and OXPHOS capacity in skeletal muscle after six weeks of HIT, whereas no improvements are seen in females. No difference was seen after training in adipose tissue, but females have a higher OXPHOS capacity at baseline compared with males. Further analysis is needed to explain these gender differences. The study was supported by NHI grants.

AGING MESOGENES EXHIBITS BLUNTED CARDIOLIPIN AND CERAMIDE REMODELING DURING HINDLIMB UNLOADING INDUCED ATROPHY AND A LACK OF MUSCLE HYPERTROPHY FOLLOWING RELOADING

Xiaoze Zhuang1, Teresa Loane1, Rick Vogel1, Bret Goodpaster2, Daniel Kelly2, Dustin Hart1, and Paul Coron1

Aging is associated with a progressive loss of muscle mass (sarcopenia) and a loss of adaptive response to mechanical loading and unloading. The molecular mechanisms that underlie the loss of adaptive response to unloading are not well understood. Recent evidence suggests that mitochondrial function and mitophagy may be important factors. Moreover, cardiolipin (CL) and ceramide (CER) remodeling are emerging as important players in mitophagy, but have not been examined in the context of mechanical unloading and recovery in aging.

Purpose: To evaluate the response of aged sarcopenic muscle to hindlimb unloading and recovery with respect to mitochondrial function (respiration; H2O2 emission; calcium retention capacity, CRC) and changes in content of individual molecular species of CL and CER.

Methods: Young (Y, 6-mo old) and aged (O, 26-mo old) C57BL/6J mice were divided into 3 groups: control (C), 10-day hind limb unloading (U) and 3 days of recovery/reloading (R). Following treatments, mice were sacrificed by CO2 asphyxiation. Hind limb muscle groups were harvested, weighed and snap frozen. Quantification of CL and CER species in the left soleus was performed by mass spectrometry-based shotgun lipidomics. Permeabilized fiber bundles were prepared from the right soleus to measure mitochondrial respiration, H2O2 emission and CRC. Results: Mice were sarcopenic, as evidenced by lower soleus, gastrocnemius and quadriceps mass, compared to Y. A similar degree of atrophy and mitochondrial dysfunction was evident in the soleus of both OH and YH groups following 10-days of unloading. However, a decrease in total cardiolipin content and distinct remodeling of individual molecular species was only evident in the YH group. Moreover, C18:0 CER content increased in the YH group, and C18:0, C22:5, and C24:1 CER content was greater in YH, compared to the OH group. Following 3 days of reloading, the YR group recovered soleus mass. There was no recovery of soleus mass for OR. Mitochondrial respiration, H2O2 emission, CRC, and total cardiolipin content also recovered in the soleus of YR, but not OR.

Conclusion: Alterations in profile of CL and CER species, recently identified as important mediators of mitophagy, occur in soleus from young mice during unloading. This in turn accompanies and perhaps facilitates effective recovery of muscle mass and mitochondrial function with reloading. This adaptive response was not evident in sarcopenic muscle. Grant Support: This research was supported by grants from National Institute of Aging (AG044437-PMC) and Diversified Translational Laboratory funding from Sanford-Burnham.

MITOCHONDRIAL DNA CHANGES AND DYSFUNCTION IN DIABETIC NEPHROPATHY

Saima Aujas1, Annu Czajka1, Luca Gnaudi2, and Alphonse Mulik1
1Diabetes Res. Grp., Kings Coll. London, 2 Fl. Hodgkin Bldg, Guys Campus, Len-
don EC1, London, SE1 1UL, UK. 2Inst. for Metabolic Med., Copenhagen, Denmark, Kings Coll. London, 3rd Fl., Franklin-Wilkins Bldg., Waterloo Campus, London, SE1 9NH, UK.

The hypothesis underlying this work is that changes in circulating mitochondrial DNA (MtdNA) and subsequent mitochondrial dysfunction are key players in the pathophysiology of diabetic nephropathy (DN). To investigate this we examined the quantity and function of circulating MtdNA in patients with DN. In a cross-sectional study (N=168), the samples were studied as 3 groups: Healthy controls (HC, N=40), Diabetics without DN with more than 20 years duration of diabetes, no history of albuminuria or signs of diabetic retinopathy (DC, N=45) and diabetic nephropathy patients with a history of or current albuminuria (DN, N=83). Whole blood DNA was isolated, MtdNA content was determined as the mitochondrial to nuclear genome ratio (M/N) using real time qPCR. PBMCs were used for bioenergetic assessment profile using Seahorse XP96 analyser. Circulating MtdNA was increased in DC (64±75) compared to HC (34±9, P=0.05) whereas the DN patients had reduced MtdNA (43±52) compared to DC (P<0.001). PBMCs from DN patients had reduced reserve capacity and maximal respiration, loss of metabolic flexibility and reduced Bioenergetic Health Index (BHI). Our data shows that patients with DN have impaired mitochondrial metabolism and support the hypothesis that alterations in MtdNA content and mitochondrial dysfunction are involved in the development of DN.

COMBINED AMPK AND PPARα AGONISM IMPROVES EXERCISE PERFORMANCE IN TRAINED MICE

Mark Christian Mann1, Kazuo Inoue1, Mirja Fujita2, Shiohori Matsunama1, and Tohru Fushiki1
1Dept. of Food Sci. and Biotechnology, Grad. Sch. of Agriculture, Kyoto Univ., Kita-
shirakawa Oiwake-cho, Sakyo-ku, Kyoto City, 6068502, Japan.

Exercise training improves muscle function and fatigue resistance during endurance exercise. AMPK and PPARα agonists have been shown to mimic these effects in...
sedimentary and mtd model mouse however, their effects together with endurance exercise training in healthy animals have not been reported. We determined the effects of the and agonists in conjunction with exercise training on endurance exercise performance, energy substrates, gene transcription, and mitochondrial density in healthy mice. General methods: Male 7-week-old Balb/c mice underwent treadmill training and were administered the following for 1mo: Vehicle (V), PPAR agonist GW0742 (G), AMPK agonist AICAR (A) or both (A+G). A non-exercised control (SED) received the vehicle. Groups were further divided into before-exercise and exhaustion groups. Indirect calorimetry in sedentary state (24h) and during exercise was conducted 2 and 3days, respectively after the final treatment. Mice were sacrificed after indirect calorimetry and biochemical assays conducted. Results: Exercise groups had improved running performance (work output). Both A and A+G had better performance with the latter significantly exceeding all groups. Treatments influenced neither the sedentary nor early exercise phase but altered indirect calorimetry parameters. Analysis of indirect calorimetry data 30min before the point of exhaustion onward showed significant changes in RQ, an increase in fatty acid oxidation with a concomitant decrease in carbohydrate oxidation in A+G but without affecting total energy expenditure. Serum glucose was elevated in A+G before exercise and de- pletion was observed in exercise groups at exhaustion. Serum triglycerides and non-esterified fatty acids were relatively similar among groups before and after exhaustion. Muscle glycogen was elevated in A+G before exercise and a general decrease was observed in all groups at exhaustion. Interestingly, muscle glycogen in A and A+G did not decrease significantly. Muscle FFA was similar before exercise but an increase especially in A+G was observed at exhaustion. Absolute liver glycogen before exercise tended to decrease in exercise groups except for A+G which was similar to that in SED. This was due to an exercise groups but not in SED at exhaustion. Muscle PGC1α, LPL, and PDK4 mRNA were elevated while increased PGC1α and decreased CHREBP mRNA in the liver was observed in A+G. PGC1α protein in the muscle was increased in all exercise groups. Finally, mitochondrial DNA copy number was similar among groups but mitochondrial density as measured by citrate synthase activity was elevated in both A and A+G. Conclusion: Combined AMPK and PPAR agonism improves exercise performance in trained mice by increasing mitochondrial density, increasing available energy substrates with improved fuel switching to fat thereby delaying the onset of hypoglycemia known to cause exercise cessation.

7.24 LIPID DROPLETS INTERACT WITH AN EXCLUSIVE SUB-POPULATION OF MITOCHONDRIA IN BROWN ADIPOCYTE

Kiuru Madhavani1, Ian Beadon2, Gilad Twig3, Jakob Wikstrom1, Marc Lisa1, David Chesn1, Kyle Trudakin, Nathan Miller, Marcos Fernandes de Oliveira4, and Omar Shirsh5

1Nutrition & Metabolism, Boston Univ., 650 Albany St, Boston, MA, 02118, 2Molecular Med, Boston Univ., 650 Albany St, Boston, MA, 02118, Dept. of Med. & the Dr. Pincus Bornstein Talmud Med. Leadership Program, Chaim Sheba Med. Ctr., Chaim Sheba Med. Ctr., Tel-Hashomer, Israel, 3Dept. of Med., Boston Univ., 650 Albunu St, Boston, MA, 02118, Dept. of Molecular Biosciences, The Wenner-Gren Inst., Stockholm Univ., Stockholm, Sweden, 4Inst. of Bioorganic Med., Univ. Fed. de Rio de Janeiro, Caudele Universitaires, 21041-970, Rio de Janeiro, Brazil. 5We have recently shown that mitochondrial dynamics is a physiological regulator of adienergically-induced changes in energy expenditure and lipid metabolism in brown adipocyte (BA). In this study we addressed the hypothesis that local changes to mitochondrial dynamics at subcellular levels play a role in generating sub-populations of mitochondria with specialized functions. Confocal microscopy of brown adipocytes harvested from wild-type C57BL/6J mice identifies the mitochondria surrounding the lipid droplets as an exclusive sub-population of mitochondria. Peroxisome proliferator-activated receptor alpha (PAM) and brown adipocyte (PAM) (PAM) in BA are more elongated as compared to cytosolic mitochondria (CM) (average length of PAM and CM are 4.9±0.4 and 3.2±0.4 μm respectively). This form of mitochondria is more commonly associated with coupled respiration. Indeed, measurements of membrane potential and NADH show that PAM have higher mitochondrial membrane potential compared to CM. Interestingly, the heterogeneity in membrane potential can be manipulated by mitochondrial dynamic protein expression and by hormonal stimulation. As the level of coupling and ATP synthesis in BA may be influenced by the levels of ATP synthase, which is expressed at very low levels in this tissue, we tested the ATP synthase expression in this specific set of mitochondria. Immunofluorescence and super-resolution microscopy indicated that mitochondrial ATP synthase in the brown adipocyte is concentrated in PAM. Since mitochondrial composition has been shown in other cells to be equilibrated and homogenized by continuous mitochondrial fusion and fission, we next measured the levels of fusion and equilibration across the mitochondrial population in the BA. Using fusion assay and matrix-targeted PAGFP we found that following photo-conversion the fluorescence intensity of PAGFP in the matrix of PDM stays ~10% higher, 65 min after photo-activation in PDM, indicating lower fusion activity. Ratiometric analysis of Mitofu1 mRNA probe showed that PAM have higher protein imports and protein content, but similar rate of protein turnover, indicating that PAM do not equilibrate their content with the rest of the mitochondrial population. This finding is also supported by their higher Tom20 content. In conclusion, PAM represent a sub-population of mitochondria with unique protein composition, architecture and activity that is likely maintained due to their reduced level of interaction with the rest of the mitochondrial population. 7.25 MITOCHONDRIA DNA IS DAMAGED IN MILITARY VETERANS WITH FATIGUING CONDITIONS

Yang Chen1, Xihua Jiao1, Helena Hill1, Jacqueline Klein2, Duncan Ndirangu1, and Michael Falvey1

Background: Gulf War illness (GWI) is the most prominent health issue affecting veterans of the 1990-1991 Gulf War, with 1 in 4 Gulf War Veterans suffering from GWI. GWI is characterized by multiple diverse symptoms of fatigue, muscle pain and cognitive dysfunction that are suggestive of mitochondrial impairment. Military exposures during deployment have been put forward in the etiology of GWI, many of which have been identified as genotoxicos. To date, mitochondrial dysfunction in veterans with GWI has only been described indirectly. Objective: The goal of this study was to access more direct evidence of mitochondrial dysfunction in GWI, by measuring mitochondrial DNA (mtDNA) content and mtDNA damage in peripheral blood mononuclear cells (PBMCs) in veterans with GWI. Methods: Twenty-five veterans with GWI and six non-deployed healthy controls were recruited and provided PBMCs for total DNA extraction. Relative mtDNA copy number (i.e. mtDNA content) and mtDNA damage were determined by quantitative polymerase chain reaction. Results: Veterans with GWI had significantly higher mtDNAcopy (p=0.008) and mtDNA damage (p=0.051) than non-deployed controls. Conclusions: This is the first study to report direct evidence of higher mtDNAcopy and mtDNA damage in veterans with GWI, supporting prior indirect evidence of mitochondrial dysfunction in this group. Future studies are necessary to confirm these findings and determine their association with mitochondrial function. In addition, work in this area may guide new diagnostic testing and treatments for veterans suffering from GWI.

7.26 STATIN MYALGIC PATIENTS HAVE IMPAIRED MITOCHONDRIAL RESPIRATORY FUNCTION IN SKELETAL MUSCLE

Tine Dohlmann1, Jørn Wulff Helge1, Flemming Dela1, and Steen Larsen1

Introduction: Statins reduce endogenous cholesterol synthesis, and is widely consumed to decrease the risk of cardiovascular events. However, statin therapy is associated with development of side effects, such as muscle ache and pain (myalgia), but the mechanism is unknown. It has been shown that statins decrease the mitochondrial function in skeletal muscle, but the aim of this study was to investigate if statin induced myalgia is coupled with impaired mitochondrial respiratory function in human skeletal muscle and adipose tissue. Methods: Two groups of healthy adults in continuous simvastatin treatment (40 mg/day) were recruited for this study. One group (n=11, 5m/6f) experienced myalgia (SM) with a VAS score of 4.7±0.7, and the other group (n=13, 6m/7f) without side effects (VAS 0.3±0.2) served as controls (SC). The groups were matched for age, BMI and VO2max (59.2±2 vs 61.2 yrs, 29.2±2 vs 29.1 kg/m2 and 26±5 vs 28±6 ml O2/min/kg, respectively). Mitochondrial respiration was measured in permeabilized muscle fibers and subcutaneous adipose tissue, using high-resolution respirometry. The protocols investigated maximal mitochondrial respiration with electron flow through complex (C) I, CII, CI+II (OXPHOS capacity), and electron transport system (ETS) capacity. Results: In skeletal muscle, maximal mitochondrial CI respiration and ETS capacity were lower in SM compared to SC (49.2±2 vs 55±1 (P<0.004) and 72±3 vs 84±3 (P=0.004) pmol O2/mg/s, respectively, and OXPHOS capacity tended to be lower in SM (63±3 vs 70±3 (P=0.076) pmol O2/mg/s, respectively). In adipose tissue, ETS capacity was lower in SM compared to SC (2.3±1 vs 2.5±0.1 (P<0.036) pmol O2/mg/s, respectively), and OXPHOS capacity (n=13) had higher OXPHOS capacity and ETS capacity, compared to men (n=11). The myalgic females (n=6) had a lower CI respiration, OXPHOS capacity and ETS capacity, compared to female controls (n=7). Discussion: We demonstrate, that statin induced myalgia is coupled to impaired mitochondrial function in skeletal muscle. Interestingly, mitochondrial respiration in adipose tissue was impaired in statin myalgic females, but not males. Since statins reduce synthesis of Ubequinone (Q10) as well as cholesterol, reduced mito-
8.0 ENERGY SCHOOL II

8.1 THE LACTIC ACIDOSIS CONSORTIUM: A MULTIDISCIPLINARY RESEARCH EFFORT TO TRANSLATE GENE DISCOVERY INTO BETTER MANAGEMENT AND TREATMENT FOR PATIENTS WITH MITOCHONDRIAL DISORDERS

Van Darbe1

1Fac. of Pharmacy, Univ. de Montréal, CP 6128 Succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada.

Mitochondrial dysfunction is involved in a large number of human pathologies, including a broad spectrum of rare but usually severe genetic mitochondrial diseases. While recent advances innext generation sequencing have led to considerable progresses in the identification of the molecular and biochemical defects underlying a number of these genetic diseases, they have not translated into major improvements of patient management. This can be explained by the existence of numerous barriers including: (i) limited information on the impact of the various mutations affecting the oxidative phosphorylation system (OXPHOS) on the mitochondrial, metabolic, and signaling phenotype, and hence, on the underlying pathogenic mechanisms, (ii) difficulties in choosing therapeutic strategies in absence of a detailed phenotypic signature, and (iii) lack of clinical tools or biomarkers, which are indicative of disease progression, clinically relevant outcomes, and impact of treatments. This presentation will provide an overview of the research effort made by our multidisciplinary research consortium to meet these challenges in patients with Leigh Syndrome French Canadian (LSFC), a severe disease prevalent in the Saguenay-Lac-St-Jean region in Quebec, which is caused by mutation of LRPPRC, a protein involved in the translation of mitochondrial-encoded polypeptides of the OXPHOS system. (Funded by CIHR.

8.2 MITOCHONDRIAL DNA CONTENT: ACCURATE MEASUREMENT AND EVALUATION AS AN EARLY BIOMARKER OF MITOCHONDRIAL DYSFUNCTION

Afshan Malik1

The amount of mitochondrial DNA per cell is dependent on the cell’s bioenergetic requirements, under normal conditions there is a correlation between mtDNA content, MtrRNA and mitochondrial function. However we found that in conditions of disease, for example in diabetic cells, there is a disconnect between the amount of mtDNA and MtrRNA and cellular bioenergetics (1). Increasingly greater numbers of studies are reporting alterations in mtDNA content in disease conditions (2), however the methodology being employed is leading to confusion in the field because of two major issues, the presence of nuclear pseudogenes with high homology to the mitochondrial genome and dilution bias caused by the differing sizes of the nuclear and mitochondrial genomes. In this talk I will explain how to accurately measure mtDNA content and describe data showing that adaptive changes MtDNA are an early event in disease suggesting that MtDNA content could be an early biomarker of mitochondrial dysfunction. References: 1. Czajka, Ajaz, Gnudi, and Malik (2015) Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy. EBioMedicine, in Press. 2. Malik and Czajka (2015) Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias Biochemical and Biophysical Research Communications 412 (2011) 1-7.

9.0 MITOCHONDRIAL ADAPTATION AND SUSCEPTIBILITY TO STRESS

9.3 MITOCHONDRIAL FUEL SUBSTRATE SWITCHING AND THE EXCITABLE BRAIN

Nico Daniel1

1Cancer Biology, Dana-Farber Cancer Inst., Harvard Med. Sch., 450 Brookline Ave., CLSB111-143, Boston, MA 02215.

Altered utilization by the brain has profound effects on neuronal activity as evident from the seizure protective effect of diets that reduce glucose utilization and promote ketone body metabolism. However, the molecular underpinnings of this glucose-to-ketone body fuel switch have remained elusive due to the complex effects of dietary manipulations. Understanding the molecular details underlying metabolic control of neuronal activity will be greatly aided by identification of cell-intrinsic regulators that can trigger a glucose-to-ketone body fuel switch in the brain without any dietary manipulation. We have found that BAD, a protein with dual roles in metabolism and apoptosis, imparts cell-autonomous reciprocal effects on glucose and ketone body consumption in neurons and astrocytes independent of its apoptotic function. BAD modifications that trigger a glucose-to-ketone body fuel switch produce a marked increase in the activity of metabolically sensitive KATP channels and resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by ablation of the KATP channel, implicating the BAD-KATP axis in metabolic control of neuronal excitation. Studies are underway to define the BAD-dependent metabolic alterations that mediate changes in neural fuel preference. This will provide a molecular handle on regulation of fuel choice in the brain and potentially reveal therapeutic strategies for the control of neuronal excitation in seizure disorders. This work is funded by NIH grant R01 NS083844. 1. Lutas A, and Yellen G, Trends Neurosci, 2013, 36:32-40. 2. Gimenez-Casasina, A., et al., Neurons, 2012, 74:719-30.

11.0 IT’S NOT JUST THE ATP! SIGNALING AND MITOCHONDRIAL FUNCTION

11.1 MITOCHONDRIA MATTER: TARGETING MITOCHONDRIAL FUNCTION IN TUMOR CELLS

Bennett Van Houten1, Wei Qian1, Jing Ma2, Karyn Hanson1, Marcella H. Bruchez3, Chaemin Lim4, and Peter Wipf5

The tumor cell Warburg effect is associated with increased glycolysis even in the presence of ample oxygen, and has dominated the cancer metabolism field for the last two decades. More recently it has been found that tumor cells our metabolically heterogeneous and can switch from glycolysis to oxidative phosphorylation depending on environmental conditions surrounding the tumor. Some forms of cancers, such as ovarian tumor cells, utilize fatty acids from adipocytes to fuel beta-oxidation in the mitochondria. We therefore have developed several approaches to attack mitochondrial function and inhibit tumor cell growth. We have found that the CPT1 inhibitor, etomoxir, greatly decreases oxygen consumption in melanoma, breast and ovarian cancer cells, and given after cisplatin treatment acts synergistically to inhibit ovarian cancer cell growth. We have also found that mitochondrial division inhibitor-1 (mdivi-1), which has been suggested to inhibit Drp1 and therefore block mitochondrial fission, causes G2/M arrest in tumor cells, but not normal cells. Furthermore we have found that mdivi-1 synergistically increases cisplatin potency by causing both a Drp1- and Bax/Bak-independent release of cytochrome C and subsequent cell death. Tumor cells also display increased reactive oxygen species (ROS) and are in a pro-oxidant state and we have developed a proof of principle approach based on specific targeting of ROS to the mitochondria by using reactive oxygen generating fluorescent protein, KillerRed to TFAM. While this approach is effective, creating stable cell lines has been difficult. To overcome this problem we have developed a novel protein-dye system, that when activated by light can directly deliver singlet oxygen into the mitochondrial matrix. This approach greatly diminishes mitochondrial function within hours of damage. Finally we have developed a novel mitochondria-targeted lapachone using the allene peptide isostere segment of the antibiotic gramicidin S (XJB-peptide). We have found that XJB-lapachone causes rapid loss of mitochondrial function and catastrophic vazarization of the cellular contents leading to rapid cell death in tumor cells. Together these results suggest that mitochondria are critical targets in cancer therapy. Work supported by GM102989 and GM067082 (B). (Funded by the Univ. of Pittsburgh Cancer Institute (BVH) and the PA CURE (BVH).

11.2 TICK, TOCK – THE BIOLOGICAL CLOCK CONTROLS THE POWERHOUSE

Shannon Bailey1

1Physiological Bioenergetics: From Bench to Bedside 2015 APS Conference 2015 APS Conference.
in the alcohol-exposed liver. Function and tissue injury is a failure in fundamental clock-driven adaptive processes except that a critical mechanism underpinning alcohol-induced mitochondrial dysfunction in hepatocytes. Finally, Dr. Bailey will provide data supporting the concept that a critical mechanism underpinning alcohol-induced mitochondrial dysfunction and tissue injury is a failure in fundamental clock-driven adaptive processes in the alcohol-exposed liver.

Molecular clock in this vital process. New data will be presented showing that integral mitochondrial processes (e.g., carbohydrate and fatty acid oxidation) may be circadian regulated, very little is known regarding time-of-day dependent changes in bioenergetics, and the importance of the molecular clock in this vital process. New data will be presented showing that integral bioenergetic components (i.e., respiratory complex activities) exhibit diurnal rhythms in the liver; thus, supporting the concept that the bioenergetic machinery of the mitochondrion is regulated by the molecular clock. To underscore the importance of the molecular clock in regulating these processes, results will be presented from studies using a hepatocyte-specific BMAL1 knockout mouse model, in which the clock is nonfunctional in hepatocytes. Finally, Dr. Bailey will provide data supporting the concept that a critical mechanism underpinning alcohol-induced mitochondrial dysfunction and tissue injury is a failure in fundamental clock-driven adaptive processes in the alcohol-exposed liver.

11.3 MITOCHONDRIAL TELOMERASE AND VASODILATION
Andreas Beyre1
1Medicine, Physiology, Med. Coll. of Wisconsin, 8701 Watertown Plank Rd., Milwauke, WI, 53226.

TERT, the catalytic subunit of telomerase elongates telomeres to prevent cellular aging. A potential role in the development of cardiovascular disease (CVD), especially the vascular endothelium has not been described. A mitochondrial role for TERT in regulating reactive oxygen species (ROS) has been shown positioning TERT as a key regulator of oxidative stress. Under physiological conditions blood flow stimulates endothelial release of nitric oxide (NO), mediating flow-mediated dilation (FMD) supporting vascular health and influencing arterial stiffness in subjects with coronary artery disease (CAD). Arterioles no longer produce NO during shear but ROS (H2O2). Interestingly acute exposure to increased intraluminal pressure (ILP) also triggers this compensatory switch whereas exposure to the physiological stressor ANG II only evokes reduced NO mediated dilation without a compensatory rise in ROS. We tested whether TERT plays a critical role in maintaining physiological NO levels and in term preventing the transition from NO to ROS as the mediator of FMD during vascular stress. A protective effect of telomerase is underlined by recent work showing that acute up-regulation of TERT is sufficient to reduce damage caused by myocardial infarction, while depletion of telomerase leads to systolic hypertrophy concomitant with telomere shortening. The natural occurring dominant-negative splice variant of TERT (b-del) is increased in most human cancers, which predominantly produce energy by glycolysis rather than mitochondrial oxidative phosphorylation. We have found and increase in b-del TERT in heart tissue from subjects with CAD generating a direct link to mitochondrial dysfunction and ROS production. We propose an inverse mechanistic relationship between ROS production and telomerase activity. Grants: R01-HL-113612, R21-OD-018306, Reference: Blir C et al. Nature Communications. 2014;5. Perez-Rivero G., et al. Circulation 2006;114:309; Listerman L et al. Cancer Res. 2013;73:2817-2828.

12.0 POSTER SESSION II

12.1 ASSESSMENT OF PERIPHERAL MITOCHONDRIAL DNA DAMAGE AND DYSFUNCTION AS A BIOMARKER OF PARKINSON’S DISEASE
Catherine Core1, Nicholas Jensen2, Evan Howlett2, Andrea Weinstein3, Kirk Erickson1, T.J. Greener2, Saray Shiva2, and Laurie Sanders2
1Pharmacology & Chemical Biology, Univ. of Pittsburgh, E1240 Thomas E. Starzl Biomedical Sci. Tower, 200 Lothrop St, Pittsburgh, PA, 15213; 2Neurology, Univ. of Pittsburgh, 3501 5th Ave, PIND 7th Fl, Pittsburgh, PA, 15260; 3Psychology, Univ. of Pittsburgh, Scaife Hall, 3rd Fl, 210 S. Bouquet St, Pittsburgh, PA, 15260.

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. Even with expert treatment, PD patients typically deteriorate over time and endure considerable motor and non-motor disability in the years after diagnosis. Currently, no cures or disease modifying therapies exist for PD. This is partially due to the inability to detect the disease before it has progressed to a stage of significant dopaminergic neuronal loss resulting in movement symptoms; this highlights the critical unmet need to identify and validate biomarkers to measure disease severity and progression. PD is increasingly being viewed as a systemic illness that affects tissues outside the brain and nervous system. While it is generally accepted that mitochondrial alterations in the brain play a role in the pathogenesis of PD, systemic mitochondrial defects have also been strongly implicated. The over-arching goal of this work is to explore and validate blood mitochondrial DNA (mtDNA) damage and mitochondrial bioenergetics as potential biomarkers of PD – which has not been previously been assessed or considered. In blood buffy-coat derived samples from a pilot study, using a quantitative polymerase chain reaction (qPCR)-based assay that measures multiple forms of mtDNA damage, we found significantly increased mtDNA damage in PD subjects compared to age-matched healthy controls. Strikingly, levels of mtDNA damage in PD subjects correlated with parameters of clinical motor signs. In a separate study evaluating platelets, a significant decrease in mitochondrial reserve capacity was observed in PD subjects, and this correlated with clinical non-motor symptoms. Currently in an expanded study, mtDNA damage and bioenergetics from enriched platelets and leukocytes samples in control and PD subjects will be assessed along with clinical features longitudinally. This will allow us to simultaneously evaluate multiple mitochondrial markers and clinical symptoms within a single individual, compare between control and PD groups and evaluate the utility of each cell-type as a biomarker of PD. Funding sources include: William N. and Bernice E. Bumpus Foundation Innovation Award, mitochondria, Aging and Metabolism/Basic Biology Aging Pilot Project Program, and Pittsburgh Claude D. Pepper OAIC.

12.2 THE DRP-1 INHIBITOR MDIVI-1 PREVENTS COMPENSATORY MITOCHONDRIAL H2O2-MEDIATED VASODILATION INDUCED BY CERAMIDE TREATMENT IN HUMAN ADIPOSE ARTERIOLES
Matthew Dumford1, Julie Freed1, Joseph Hockemeyer2, and David Gutterman3, 4
1Dept. of Med, Med. Coll. of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, 2Dept. of Anesthesiology, Med. Coll. of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226.

Background: The sphingolipid ceramide has been shown to increase mitochondrial reactive oxygen species and is elevated in the plasma of patients at risk for heart disease. Previously we have shown that incubating human adipose arterioles with C2-ceramide inhibits nitric oxide (NO) as the mediator of flow induced dilation (FID), allowing mitochondrial-derived hydrogen peroxide (H2O2) to compensate. Ceramide also induces mitochondrial fission in cell culture by upregulating dynamin related protein 1 (DRP-1), however it is not known if ceramide-induced fission is critical for the switch in mediator of FID to occur. Hypothesis: Inhibiting DRP-1 in human adipose microvessels prevents the compensatory H2O2-mediated dilation that occurs when NO is suppressed following ceramide treatment alone. Methods: Discarded human adipose tissue was obtained at the time of surgery, microvessels (100-200 µm in diameter) were cannulated in an organ chamber, and the internal diameter was measured via video microscopy. FID was assessed during graded increases in intraluminal flow ± the NO synthase inhibitor L-NAME (100 µM) or the H2O2 scavenger polyethylene (PEG) catalase (500 U/mL). Vessels were incubated for 16-20 hours at 37°C with C2-ceramide (10 µM) ± Mdivi1 (50 µM). Mdivi1, a fluorescent probe specific for mitochondrial H2O2, was used to quantify changes in mitochondrial H2O2 during flow. Results: Immunohistochemistry showed increased DRP-1 expression in microvessels treated with ceramide vs. vehicle. Mdivi1 treatment alone had no effect on FID (max dilation 75 ± 5.6% vs. vehicle 76 ± 5.1%) which was mediated by NO since L-NAME abolished dilation (max dilation 4 ± 2.6%) and PEG-catalase had no effect (max dilation 91 ± 2.2%). Vessels treated with Mdivi1 ± ceramide did not dilate to flow (max dilation 6 ± 5.6%) and reduced generation of mitochondrial H2O2 was observed (the increase in Mito-Perox fluorescence with ceramide alone was 86 ± 31% compared to baseline, but with Mdivi1 ± ceramide only an 11 ± 14% increase was seen). Conclusion: Treating human adipose vessels with the DRP-1 inhibitor Mdivi1 prevented compensatory, mitochondrial H2O2-mediated dilation from occurring in response to ceramide treatment, suggesting that mitochondrial fission may be necessary for this process to occur. This work was supported by the National Institutes of Health HL113612-02 (DKG) and American Heart Association 14POST18780022 (MID).

12.3 MITOCHONDRIAL OXYGEN CONSUMPTION IS REDUCED IN CEREBRAL ARTERIES BY DISTANT ISCHEMIA
Bhola Rutka1, Sohrinha Dutta1, Korey Walter1, Prasad Katakam1, and David Basua1
1Pharmacology, Tulane Univ., 1430 Tulane Ave., New Orleans, LA, 70112.
Ischemic stroke is a leading cause of morbidity and mortality. Several studies have indicated that mitochondrial dysfunction plays a central role in the pathophysiology of stroke but the exact mechanisms are not clear. Our laboratory has made the novel and surprising finding that both mitochondrial protein mass and mitochondrial-derived vesiculosis of the middle cerebral artery are intact on the side ipsilateral (Ipsi) to transient middle cerebral artery occlusion (MCAO) while severely reduced on the side contralateral (Contra) to MCAO. However, mitochondrial respiration following MCAO is unknown. We examined mitochondrial oxygen consumption rate (OCR) in MCAs following MCAO or sham operation and correlated it with mitochondrial DNA encoded proteins and MnSOD expression. Eight to ten week old, male, Sprague-Dawley rats were exposed to 90 min of ischemia and 48 h of reperfusion using the filament method, while the shams animals received anesthesia without filament insertion. The Seahorse Bioscience XF24 analyzer was used to measure OCR in isolated MCAs following experimental stroke or sham operations using oligomycin, FCCP, antimycin, and rotenone. Western blotting was used to determine protein expression in the arteries. The protein normalized OCR (pmol/min/mg protein) was significantly (p < 0.05) decreased in Contra MCAs compared with Ipsi and sham, with no significant differences between Ipsi and sham. The basal respiration (128 ± 15, ATP production (49 ± 6), protein leak (68 ± 10), maximal respiration (238 ± 23), and the non-mitochondrial respiration (31 ± 3) were decreased in Contra compared with Ipsi and sham MCAs (196 ± 13; 83 ± 14; 333 ± 14; and 56 ± 3, respectively). All of the beta-actin normalized protein levels of Complex-II, IV, and MnSOD but not Complex-I, were higher in Ipsi MCAs (136 ± 3; 104 ± 10; 35 ± 4, and 149 ± 15, respectively) compared with Contra (121 ± 6; 90 ± 3; 13 ± 2; and 82 ± 16, respectively). These results extend our previous findings that mitochondrial function in Ipsi MCAs is preserved while it is severely impaired in Contra MCAs. Furthermore, our results indicate side specific therapies may be appropriate. This work was supported by NIH grants HL-077731 and HL093554, AHA grants 14SDG2040359 and 15POST2040005, and the Louisiana Board of Regents Support Fund-Research Competitiveness Subprogram LEQSF(2014-17)-RD-A-11.

12.4 ROLE OF O-GlcNACYLATION IN REGULATING MITOPHAGY AND MITOCIONDRAL FUNCTION IN CARDIOMYOCYTES

Julie Larson1, Philip Knauper1, Victor Darley-Umen1, and John Chatham1

1Pathology, University of Alabama at Birmingham, 1670 University Blvd., Volker Hall G041, Birmingham, AL, 35294.

The post-translational modification of proteins by O-linked-N-acetylglucosamine (O-GlcNAc) has been implicated to play a role in cardiovascular disease and mitochondrial dysfunction. Acute increases in O-GlcNAcylation have been shown to protect cardiomyocytes against oxidative stress which has been associated with O-GlcNAc (1) has been implicated to play a role in cardiovascular disease and mitochondrial abnormalities, cardio-skeletal myopathy and early mortality. Whole-body oxidative metabolism and cardiac function have been previously reported in BTHS; however, in vivo cardio-skeletal energetics and the relationship to heart and skeletal muscle function in children with BTHS are not known. Objective: To quantify cardio-skeletal energetics and examine the relationship with cardio-skeletal muscle function in children with BTHS.

12.5 IMPAIRED CARDIO-SKELETAL MUSCLE ENERGETICS IN CHILDREN WITH BARTHI SYNDROME: A 31P MRS STUDY

William Cadam, Kathryn Bohnert, Dominik Reeds, Linda Peterson, Rachel Tirrinia, Adam Bittel, Daniel Bittel, Lisa de las Fuentes, Barry Byrne, and Adil Bashir

Background: Barth syndrome (BTHS) is a rare inherited disease caused by mutations in the tafazzin gene resulting in cardiopulmonary, mitochondrial abnormalities, cardio-skeletal myopathy and early mortality. Whole-body oxidative metabolism and cardiac function have been previously reported in BTHS; however, in vivo cardio-skeletal energetics and the relationship to heart and skeletal muscle function in children with BTHS is not known. Objective: To quantify cardio-skeletal energetics and examine the relationship with cardio-skeletal muscle function in children with BTHS.

12.6 METABOLIC AND BIOENERGETIC CHARACTERIZATION OF A NON-ISCHEMIC MOUSE MODEL OF HEART FAILURE

Anisha Gupta1, Ajun Zhang2, Shumin Li1, Andrea Cordero-Reyes3, Keith Youker2, Guillermo Torres-Arauzo1, and Dale Harrold1

1Ctr. for Bioenergetics, Houston Methodist Res. Inst., 6565 Fannin St., Houston, TX, 77030; 2Cardiovascular Sci., Houston Methodist Res. Inst., 6565 Fannin St., Houston, TX, 77030; 3Catedra de Cardiologia y Med. Vascular, Tecnologico de Monterrey, Monterrey, Mexico.

Mitochondrial dysfunction has been implicated as a cause for energy deprivation in heart failure (HF). Much of our understanding of the metabolism and bioenergetics in HF derives from animal models of myocardial ischemia. In this study, we characterized the metabolic and cardiac mitochondrial function in a mouse model of non-ischemic HF. Male C57BL/6J mice (12 weeks old) were administered L-NG-Nitroarginine methyl ester (L-NAME, 0.3 mg/ml with 1% NaCl) in the drinking water, or Angiotensin II (AngII, 0.7 mg/kg/day) via subcutaneous osmotic pumps or a combination of both (L-NAME+AngII) for 5 weeks. Cardiac function, protein expression, mitochondrial respiratory oxygen species production and mitochondrial function in isolated mitochondria and peripherally localized fibers in response to pyruvate-malate (PM), palmitoylcarnitine-malate (PC), succinate and glutamate-malate (GMS) substrates were measured. ADP-independent, substrate-dependent oxygen respiration rates (state 2),
ADP-supported respiratory rates (state 3) and respiratory control ratio (RCR=state 3/state 2) were calculated. Compared with L-NAME or AngII treatment alone, L-NAME=AngII induced the most severe phenotype of HF characterized by edema, hypertrophy (increased heart weight/tibia length ratio), fibrosis, increased blood pressure and reduced ejection fractions to ~40%. L-NAME=AngII treated mice had robust deterioration of cardiac mitochondrial function, as observed by reduced RCR for PM, PC and GM but not for succinate in sarcomembranous mitochondria. In interstitial mitochondria, only state 3 rates were significantly reduced in the L-NAME=AngII group versus controls for PM, PC and GM but not for succinate. However, mitochondrial membrane potential was not significantly different among the 4 groups. Cardiac myofibris from L-NAME=AngII mice had reduced ADP-supported oxygen consumption, uncoupled respiration and oligomycin rates for PM=succinate. Further, mitochondrial DNA content was reduced in AngII and L-NAME=AngII hearts. Production of reactive oxygen species (ROS) was higher in AngII and L-NAME=AngII groups. Phospho-AMPK/AMPK was reduced in hearts of L-NAME and L-NAME=AngII groups. We conclude that combination of L-NAME=AngII exacerbates cardiac contractile and mitochondrial functional deregulation compared with L-NAME and AngII alone, resulting in non-ischemic HF.

12.7 MITOCHONDRIAL FUNCTIONS IN THE REGULATION OF EFFECTOR MACROPHAGE IN CORONARY ARTERY DISEASE
Rafal Nazarewicz1,2, Tsuyoshi Shirai2, David Harrison3, and Cornelia Weyand 2

Macrophages play a pivotal role in coronary artery disease (CAD). Cytokine production is one of the main effector functions of the macrophages. Cytokines trigger local inflammation in arteries and thus contribute to the progression of CAD. There is evidence that mitochondrial functions play a regulatory role in effector macrophages. We hypothesized that mitochondrial reactive oxygen species (ROS)-dependent signaling regulates cytokine production in hyperinflammatory CAD macrophages. We used monocyte-derived macrophages from CAD patients and healthy subjects to characterize basic mitochondrial functions, including cellular respiration, mitochondrial membrane potential, ROS production and mitochondrial morphology. We found that CAD macrophages have distinctive fragmented mitochondria when compared to controls indicating functional alterations. In fact, we found that resting (M0) and activated (M1) macrophages show significant differences in metabolic and mitochondrial functions. CAD macrophages had a higher metabolic rate associated with a higher uptake of glucose. This resulted in higher basal and maximal mitochondrial respiration. In line with this observation, we found over 30% higher membrane potential and mitochondrial ROS production in CAD. Increased mitochondrial ROS production in CAD macrophages depleted glutathione by over 50%. Next, we analyzed detailed molecular mechanisms behind observed dysfunctions and identified a main regulatory mechanism in the mitochondria responsible for the ROS overproduction. We also investigated what are molecular targets for ROS released from the mitochondria and its functional consequences. Increased ROS production and mitochondrial metabolism induced a proinflammatory phenotype in CAD macrophages, including intensified IL-6 and IL-1β production. Manipulations of mitochondrial ROS by targeting hydrogen peroxide with mito-ethen reversed changes in effector functions of macrophages. Correcting mitochondrial dysfunctions by pharmacological intervention also reversed the proinflammatory phenotype in CAD macrophages. Taken together our study indicates a critical role for mitochondria in the regulation of effector functions and a proinflammatory phenotype in CAD macrophages.

12.8 MITOCHONDRIAL PERMEABILITY TRANSITION DRIVES ROS GENERATION ASSOCIATED WITH DEGRADATION OF ELECTRON TRANSFER CHAIN SUPERCOMPLEXES IN HEART ISCHEMIA-REPERFUSION
Sehwon Jung1 and Sabah Ali Javadov2

1Dept. of Physiology & Biophysics, Univ. of Puerto Rico Med. Campus, Univ. of Puerto Rico Sch. of Med., Sixth Fl., Rm. A-665, GPO Box 365067, San Juan, PR, 00936-5067, 2Med., Stanford Univ., 269 Campus Dr. W., Stanford, CA, 94305.

Background: Sustained ischemia-reperfusion (IR) induces Ca2+ overload and enhances generation of reactive oxygen species (ROS) predominantly by damaged mitochondrial electron transfer chain (ETC) complexes. These alterations and high glutathione (GSH) due to increased ATP depletion induce mitochondrial permeability transition (MPT) accompanied by the opening of non-specific MPT pores (MPTP) in the inner mitochondrial membrane. In addition, oxidative stress caused by IR increases oxidation of cardiolipin, a unique mitochondrial phospholipid, and leads to destabilization of ETC supercomplexes (SCs). SCs are the large supramolecular assembly of ETC complexes that provide highly efficient flux of electrons through the ETC. Consequently, SCs increase ATP synthesis and significantly reduce electron leakage and ROS production due to short diffusion distances between ETC complexes. Both opening of MPTP and degradation of SCs are central players to initiate mitochondria-mediated cell death, however the contribution of MPTP to SCs disassembly remains unclear. Hypothesis: MPT-induced ROS is associated with SCs dissociation in cardiac IR. Methods: The relationship between MPT, ROS, and SCs were investigated using Langendorff rat hearts with or without 25 min of warm ischemia followed by 5 min or 60 min reperfusion in the presence or absence of the MPT inhibitor, sanglifehrin A (SIA). Calcium-induced swelling of mitochondria was monitored to assess MPT opening. SCs were analyzed by Blue native electrophoresis followed by 2D SDS-PAGE was used to analyze individual ETC complexes and SCs. ROS levels were measured with Amplex Red. Results: Cardiac ischemia followed by both 5 and 60 min reperfusion induced MPT opening and ROS generation. The production of ROS was inhibited by SIA indicating that it is MPT-dependent. 2D SDS PAGE revealed that over 50% of complex I was involved in the SC I+III+IV while only ~10% of the complex remained unbound. Percent distributions of SCs were significantly affected by IR and the effects were dependent on the reperfusion time. We found a high SC I+IV and low SC I+III associated with increased complex I proportion at early (5-min) reperfusion. The changes remained after 60 min of reperfusion. Conclusion: Cardiac IR exerts various effects on mitochondrial SCs depending on reperfusion time. MPT-induced ROS presumably plays a key role in SCs disassembly. Funding sources: NHLBI NIH Grant S1CH118690 (to SH).

12.9 MITOCHONDRIAL RESPIRATION AND CALCIUM ACTIVATION ARE MAINTAINED IN THE PRESENCE OF HEART FAILURE LEVELS OF EXTRAMITOCHONDRIAL SODIUM
Sarah Kuzmick-Glancy1, Brian Glancy2, and Matthew Kay2

Biomedical Engineering, The George Washington Univ., 800 22nd St. NW, Washington, DC, 20037, 2NHBLI, NIH, 10 Center Dr., Rm. B1D416, Bethesda, MD, 20892.

An increase in cytosolic Na+ is a hallmark of heart failure. Elevated Na+ is thought to decrease mitochondrial matrix Ca2+ via the Na+-Ca2+ exchanger, inhibiting the Ca2+ activation of mitochondrial ATP production. However, the impact of elevated Na+ on mitochondrial respiration, matrix redox potential, and membrane potential (ΔΨ) during an acute increase in Ca2+ remains unknown. Isolated adult male rat ventricular mitochondria were respired at maximal (State 3) and intermediate oxygen consumption rates (I3), achieved by modifying the Gibbs free energy of ATP (ΔGATP). ΔΨ was measured with a TPP+ electrode and matrix redox potential (NADH) was measured using UV excitation and measuring emission with a spectrometer. Mitochondria were incubated with normal (5 mM) or heart failure (15 mM) levels of NaCl with and without added Ca2+ (840 nM free Ca2+). Maximal respiration rate was the same whether mitochondria were incubated with 5 or 15 mM Na+ (216±28 vs 244±66 nmol O2/mg/min), with the addition of ΔΨ increasing respiration to the same level with either Na+ concentration (360±80 vs 342±10 nmol O2/mg/min). Additionally, the slope of ΔGATP, a relationship between the difference of mitochondrial conductance when fuel is saturating, did not differ between 5 and 15 mM Na+ (53±14 and 53±17). Ca2+ increased the slope of ΔGATP with either 5 or 15 mM Na+ (95±7 and 100±22). At either Na+ concentration, the matrix redox potential was constant across all values of ΔGATP with the NAD/NADH pool 20±4% reduced at a ΔGATP of -13.1 kcal/mol and 21±5% reduced at a ΔGATP of -14.4 kcal/mol. With Ca2+, the NAD/NADH pool was 24±3% reduced at a ΔGATP of -13.1 kcal/mol, but reduction increased to 41±1% at a ΔGATP of -14.4 kcal/mol at either Na+ level. The addition of Ca2+ to either Na+ concentration increased conductance (the effective activity) of the electron transport chain, shown by a 2.5-fold increase in the slope of the relationship between I3 and the free energy difference between NADH and ATP, as well as conductance of mitochondrial ATP production and transport (ATP to ΔGATP). Healthy or failing [Na+]i decreases respiration, and acute increases in Ca2+ activate respiration and increase the conductance of the oxidative phosphorylation pathway to the same level regardless of Na+ concentration. This implicates the importance of Ca2+ import via the mitochondrial Ca2+ uniporter, potentially compensating for Na+-impermeable NIs (R01-HL095828A) to MWK; AHA (14POST20490181) to SKG.

12.10 AN ELECTRICALLY CONDUCTIVE MITOCHONDRIAL RETICULUM IN SKELETAL MUSCLE
Brian Glancy1, Lisa M. Hartnell2, Daniela Malide1, Zu-Xi Yu1, Christian A. Combs1, Patricia S. Connolly1, Srinivas Subramaniam1, and Robert S. Balaban1

2015 APS Conference
Physiological Bioenergetics: From Bench to Bedside
ABSTRACTS OF INVITED AND VOLUNTEERED PRESENTATIONS

322
The mechanism of intracellular energy distribution has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion. However, both myoglobin and creatine kinase knockout mice survive with near normal skeletal muscle performance and only modest adaptations. Thus, our goal was to re-examine the energy distribution mechanisms in skeletal muscle. We hypothesized that muscle mitochondrial structure minimizes diffusion distances. Focused ion beam scanning electron microscopy (FIB/SEM) was used to visualize fixed mouse skeletal muscle volumes with 15 nm 3D resolution and was validated by super-resolution microscopy of live, single muscle fibers. Mitochondria formed a highly connected reticulum as nearly all mitochondria were coupled directly through a continuous outer mitochondrial membrane or through electron dense contact sites (EDCS) between adjacent mitochondria. 99.9±0.1% of the largely ellipsoidal shaped perivascular mitochondrial (PVM) were connected to adjacent PVM by EDCS and 21.2±3.2% of PVM were directly coupled to thin mitochondrial tubules projecting into the intracellular space along the I-bands (IBM). 99.7±0.3% of the thick mitochondrial tubules running parallel to fibers (FPM) were coupled to adjacent FPM through EDCS while 81.7±3.6% of FPM branched directly into IBM. To test the electrical connectivity of this reticulum, we used a photoconvertible mitochondrial uncoupler to depolarize the membrane potential (∆Ψ) of a small interior region of an isolated muscle fiber and observed that the fall in ∆Ψ propagated to mitochondria in neighboring regions. Upon a mild depolarization, a rapid (∼200 μs) and near uniform drop in ∆Ψ occurred in mitochondria across the cell including a homogenous decrease in the PVM. Further, using dual labeling immunofluorescence, we found that mitochondrial proteins associated with ∆Ψ production (cytochrome c and COX) are relatively high in abundance near the cell boundary and proteins that utilize ∆Ψ for ATP production (ATP synthase) are preferentially located in the cell interior near contractile and transport ATPases. Together, these data demonstrate a mitochondrial reticulum that allows for a rapid, coordinated distribution of energy throughout the cell without the requirement of extensive metabolite diffusion. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for energy distribution in this cell. Funding: NIH Intramural Research Program.

12.11 DIET-INDUCED KETOSIS PROTECTS AGAINST FOCAL CEREBRAL ISCHEMIA IN MOUSE

Michelle Pacholec, Yongming Jin, Tyler Caldwell, Yu Luo, Kui Xu

Department of Physiology & Biophysics, Case Western Res. Univ., 10900 Euclid Ave., Cleveland, OH, 44106, 2Dept. of Neurosurgery, Case Western Res. Univ., 10900 Euclid Ave., Cleveland, OH, 44106, 3Dept. of Physiology & Biophysics, Case Western Res. Univ., 10900 Euclid Ave., Cleveland, OH, 44106.

Introduction: Over the past decade our research has consistently shown that ketosis is neuroprotective against ischemic insults in rats. Diet-induced ketotic rats had a significant reduction in infarct volume when subjected to middle cerebral artery occlusion (MCAO). Ketotic rats showed improved survival and recovery after cardiac arrest and resuscitation. Ketones can act as alternate energy substrates to glucose, especially during metabolic derangements of glucose metabolism. Supply of substrate to the mitochondria is critical, especially during conditions of high energy demand where glucose metabolism may be deficient, such as with oxidative injury. Under these circumstances, ketone bodies can restore energy balance via stabilization of glucose metabolism and reduced oxidative damage though upregulation of salvage pathways. One of the mechanisms involves succinate-inhibited-stimulation of hypoxia-inducible factor-1α (HIF-1α) and its downstream effects on intermediary metabolism. HIF-1α, acting as a metabolic sensor, is important for cell survival, especially under acute “metabolic stress conditions”, such as with ischemia reperfusion injury. In this study we investigated the effect of diet-induced ketosis on HIF-1α accumulation and infarct volume following transient focal cerebral ischemia in mice.

Methods: Mice (11 weeks old) were randomly assigned to two groups, ketogenic (high fat, carbohydrate restricted; KG) or standard lab chow (STD) diet for 3 weeks before MCAO. Mice underwent 60 minutes of MCAO and reperfusion. The total brain infarct volume was evaluated by Glemsa staining 48 hours after reperfusion. In a separate group of mice, HIF-1α levels were measured in brains by Western Blot analysis.

Results: After 3 weeks of ketogenic diet, plasma ketone bodies (beta-hydroxybutyrate, BBB) were increased (vehicle group 0.32 ± 0.015 vs. KG group 3.21 ± 0.26). The infarct volume decreased in the KG group compared to the STD group (42 ± 0.6 vs. 7.8 ± 2.2 mm³, p = 0.0001). When compared to the STD group, KG group showed a significant decrease in infarct volume (42 ± 0.6 vs. 7.8 ± 2.2 mm³, p = 0.0001). The ketone bodies produced had no effect on mitochondrial reactive oxygen species (ROS) production.

Conclusion: Our results showed that ketosis can be induced in mice by ketogenic diet and that diet-induced ketosis was neuroprotective against focal cerebral ischemia. One potential mechanism may be related to the upregulation of HIF-1α through redox modulation by ketosis.

12.12 ROLE OF MITOCHONDRIAL STRUCTURE, FUNCTION AND REDOX SIGNALING IN MEGAKARYOPOIESIS

Teague Cole, Grant Bullock, and Stuti Shiva

1Pharmacology, Univ. of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, 2Ctr. for Metabolism & Mitochondrial Med., Univ. of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, 3Dept. of Physiology & Biophysics, Case Western Res. Univ., 10900 Euclid Ave., Cleveland, OH, 44106.

Introduction: In a separate group of mice, HIF-1α expression was evaluated by Giemsa staining 48 hours after reperfusion. In this study we investigated the effect of diet-induced ketosis on HIF1α, the key transcriptional regulator of mitochondrial biogenesis and energy metabolism. HIF1α, acting as a metabolic sensor, is important for cell survival, especially during conditions of high energy demand where glucose metabolism may be deficient, such as with oxidative injury. Under these circumstances, ketone bodies can restore energy balance via stabilization of glucose metabolism and reduced oxidative damage though upregulation of salvage pathways. One of the mechanisms involves succinate-inhibited-stimulation of hypoxia-inducible factor-1α (HIF-1α) and its downstream effects on intermediary metabolism. HIF-1α, acting as a metabolic sensor, is important for cell survival, especially under acute “metabolic stress conditions”, such as with ischemia reperfusion injury. In this study we investigated the effect of diet-induced ketosis on HIF1α accumulation and infarct volume following transient focal cerebral ischemia in mice.

Methods: Mice (11 weeks old) were randomly assigned to two groups, ketogenic (high fat, carbohydrate restricted; KG) or standard lab chow (STD) diet for 3 weeks before MCAO. Mice underwent 60 minutes of MCAO and reperfusion. The total brain infarct volume was evaluated by Glemsa staining 48 hours after reperfusion. In a separate group of mice, HIF-1α levels were measured in brains by Western Blot analysis.

Results: After 3 weeks of ketogenic diet, plasma ketone bodies (beta-hydroxybutyrate, BBB) were increased (vehicle group 0.32 ± 0.015 vs. KG group 3.21 ± 0.26). The infarct volume decreased in the KG group compared to the STD group (42 ± 0.6 vs. 7.8 ± 2.2 mm³, p = 0.0001). When compared to the STD group, KG group showed a significant decrease in infarct volume (42 ± 0.6 vs. 7.8 ± 2.2 mm³, p = 0.0001). The ketone bodies produced had no effect on mitochondrial reactive oxygen species (ROS) production.

Conclusion: Our results showed that ketosis can be induced in mice by ketogenic diet and that diet-induced ketosis was neuroprotective against focal cerebral ischemia. One potential mechanism may be related to the upregulation of HIF-1α through redox modulation by ketosis.
and mitochondrial metabolism. In addition, PGC-1α, a driver of mitochondrial bio-
genesis, is required for survival of robustly proliferating allogeneic T cells in vitro. Future studies will determine if modulation of PGC-1α, or its downstream targets, can mitigate GVHD and make blood and marrow transplantation a safer and more ef-
ficacious therapy.

12.14 EVIDENCE FOR INVOLVEMENT OF MITOCHON-
DRIAL MATRIX ROS AND HYPOXIA-INDUCIBLE
FACTOR-1 IN THE GROWTH INHIBITORY EFFECT
OF RESVERATROL
Jouko Forrester1 and Jeff Stuart2
1Biological Sci., Brock Univ., 500 Glenridge Ave., St. Catharines, ON, L2S 3A1, Canada. Despite the well-known inhibitory effect of RES on cell growth, the molecular machinery involved behind it is not fully understood. We have shown that RES’s inhibition of cell growth is dependent upon Mn-superoxide dismutase (MnSOD) induction and an active mitochondrial respiratory chain (Robb, E.L. and Stuart, J.A. 2011; Robb E.L. and Stuart, J.A. 2014). These results suggest that mitochondrial matrix ROS is involved in the inhibition of cell growth caused by RES and similar molecules. A possible downstream target of mitochondrial ROS that could link the modulation of mitochondrial matrix ROS to growth inhibition is the hypoxia inducible factor (HIF). HIF1 is a heterodimeric transcription factor, which is redox-regulated via its HIF-1α subunit. Mitochondrial ROS, including MnSOD levels specifically, have been implicated in HIF-1α stabilization (Seppälä, S. et al., 2008), and HIF-1 stabilization has in turn been implicated in the growth of various cancer cells. We found that RES’s inhibition of PC3 (prostate cancer) cell growth was abolished when HIF-1α was inhibited by CoCl2 (a hypoxia mimetic) or IOX2 (a prolyl hydroxylase in-
hibitor). This may be linked to HIF-1α’s induction of glycolytic machinery, as the ex-
pression of some HIF-1 gene targets was reduced in cells treated with RES. Inter-
estingly, growth of PC3 cells in galactose media, which forces greater reliance on oxida-
tive phosphorylation and prevents reliance on the glucose fermentation promoted by HIF-1, was not inhibited by RES. Also, the effects of RES on PC3 cell growth were substantially greater in cells grown under hypoxic conditions (as low as 0.4% O2). Together, these results are consistent with a role for mitochondrial matrix ROS, MnSOD, and HIF-1 in the cell growth inhibitory effects of RES. Research funding was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

12.15 MITOCHONDRIAL MORTALITY RESPONSE TO NUTRI-
ENT ENVIRONMENT IN THE PANCREATIC BETA-
CELL: ROLE OF MITOION 1 NUTRITION-SENSING
THROUGH O-GlcNAc MODIFICATION
Kyle Trudeau1, Gulcin Pekkurnaz1, Samuel Serek1, Thomas Schwarz1, and Orian Shirihai1
1Med., Boston Univ. Sch. of Med., 650 Albany St., Boston, MA, 02118; 2Endo-
crinology, Boston Univ. Sch. of Med., 650 Albany St., Boston, MA, 02118; 3Endo-
crinology, Univ. of Alberta, 9-70 Med. Sci. Bldg., Edmonton, AB, T6G 2H7, Canada. We have previously reported that high glucose and fatty acids, termed glucolipotoxicity (GLT), causes mitochondrial fragmentation and is concurrent with beta-cell dys-
fuction in cultured insulinomas (INS1) cells and mouse islets. However, it remains un-
clear if GLT causes mitochondrial fragmentation in human islets and whether this fragmentation plays a compensatory or pathological role during GLT-induced beta-
cell dysfunction. To address if GLT alters mitochondrial shape in human beta-cells, islets were cultured in media with normal nutrients (5mM glucose, 10% BSA) or media with high glucose (11.2 mM) and fatty acids (1mM oleate and palmitate) for 4 days. Assessing mitochondrial morphology and membrane potential (MMP) by conf-
cosal imaging revealed that GLT significantly fragments mitochondria and increases MMP heterogeneity in human beta-cells. Concomitantly, glucose-stimulated insulin secretion (GSIS) was inhibited. Genetically inducing mitochondrial fragmentation by decreasing levels of mitochondrial fusion protein, Mfn2, in INS1 cells protected from GLT-induced cell death. Conversely, preventing GLUT-induced fragmentation by ex-
pressing dominant-negative construct of mitochondrial fusion protein, DRP1 (DRP1-
DN), further disrupts MMP and causes accumulation of depolarized mitochondria in human beta-cells. Moreover, GLUT-induced inhibition of GSIS is further decreased in human islets expressing DRP1-DN. In conclusion, mitochondrial fragmentation in re-
spONSE to GLUT represents a compensatory adaptation to GLUT insult, which works to preserve mitochondrial and beta-cell function. K.T. was supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0741448, and Levinsky Fellowship from the department of Medicine at Boston University School of Medicine. O.S. is funded by NIH grants RO1 DK35914, RO1 DK56690, and RO1 DK074778.

12.16 MITOCHONDRIAL FRAGMENTATION IN RESPONSE TO
GLUCOLIPOTOXICITY REPRESENTS A COM-
PENSATORY ADAPTATION TO MAINTAIN BETA-
CELL FUNCTION
Kyle Trudeau1, Samuel Serek1, Nathaniel Miller2, Patrick MacDonald3, and Orian Shirihai1
1Med., Boston Univ. Sch. of Med., 650 Albany St., Boston, MA, 02118; 2Endo-
crinology, Boston Univ. Sch. of Med., 650 Albany St., Boston, MA, 02118; 3Pharma-
ocology, Univ. of Alberta, 9-70 Med. Sci. Bldg., Edmonton, AB, T6G 2H7, Canada. We have previously reported that high glucose and fatty acids, termed glucolipotoxicity (GLT), causes mitochondrial fragmentation and is concurrent with beta-cell dys-
fuction in cultured insulinomas (INS1) cells and mouse islets. However, it remains un-
clear if GLT causes mitochondrial fragmentation in human islets and whether this fragmentation plays a compensatory or pathological role during GLT-induced beta-
cell dysfunction. To address if GLT alters mitochondrial shape in human beta-cells, islets were cultured in media with normal nutrients (5mM glucose, 10% BSA) or media with high glucose (11.2 mM) and fatty acids (1mM oleate and palmitate) for 4 days. Assessing mitochondrial morphology and membrane potential (MMP) by conf-
cosal imaging revealed that GLT significantly fragments mitochondria and increases MMP heterogeneity in human beta-cells. Concomitantly, glucose-stimulated insulin secretion (GSIS) was inhibited. Genetically inducing mitochondrial fragmentation by decreasing levels of mitochondrial fusion protein, Mfn2, in INS1 cells protected from GLT-induced cell death. Conversely, preventing GLUT-induced fragmentation by ex-
pressing dominant-negative construct of mitochondrial fusion protein, DRP1 (DRP1-
DN), further disrupts MMP and causes accumulation of depolarized mitochondria in human beta-cells. Moreover, GLUT-induced inhibition of GSIS is further decreased in human islets expressing DRP1-DN. In conclusion, mitochondrial fragmentation in re-
spONSE to GLUT represents a compensatory adaptation to GLUT insult, which works to preserve mitochondrial and beta-cell function. K.T. was supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0741448, and Levinsky Fellowship from the department of Medicine at Boston University School of Medicine. O.S. is funded by NIH grants RO1 DK35914, RO1 DK56690, and RO1 DK074778.

12.17 MOLECULAR MECHANISMS BEHIND THE AC-
CUMULATION OF LIPIDS THAT OCCUR AFTER SKELE-
TAL MUSCLE INJURY
Jonathan Giancardo1 and Christopher Mendis1
1Molecular & Integrative Physiology, Univ. of Michigan, 109 Zina Pitcher Pl., 2278 BSRB, Ann Arbor, MI, 48109, Orthopaedic Surgery, Univ. of Michigan, 109 Zina Pitcher Pl., 2278 BSRB, Ann Arbor, MI, 48109. Myosteatosis is the accumulation of lipid that occurs after skeletal muscle injury or in certain chronic neuromuscular or metabolic diseases. Muscle fiber atrophy and fibrosis often accompany myosteatosis. The amount of lipid accumulation is negatively correlated with skeletal muscle functional capacity, but the causes of myosteatosis are unknown. To gain a greater understanding of the ontogeny of myosteatosis, we in-
duced a severe injury to the rotator cuff musculature in rats, isolated tissues 10, 30 or 60 days after tear, and used a combination of RNA sequencing and shotgun lip-
domics to identify global changes in gene expression and lipid content in injured muscles. The RNA sequencing data and shotgun lipidomics results were then ana-
lyzed with MetScape and IPA software to determine the biochemical pathways in-
volved in myosteatosis. After injury, there was a time dependent increase in total lipid, which was primarily due to a drastic rise in triglyceride (TAG) content over each time point. While the expression of the rate-limiting TAG synthesis enzymes, DGAT1 and DGAT2, were not increased, major lipases responsible for the break-
down of TAG, including ATGL, LPL, and HSL, were downregulated following in-
jury. There was also a decrease in cardiolipin content and a reduction in the expression of GLUT-induced cell death. However, Mill-Qnax expression in INS1 cells or mouse islets inhibited acute (<1 hour) glucose-stimulated stimulation of mitochondrial oxygen consumption and insulin secretion, suggesting O-GlcNAcylation of Milton1 may also play a regulatory role during glucose-stimulated insulin secretion in the beta-
cell. Collectively, our findings suggest that changes to mitochondrial motility under a chronic high nutrient environment may contribute to mitochondrial and beta-cell dys-
fuction. Importantly, nutrient-sensing of Mill1 activity via O-GlcNAc modify-
cation is a key player connecting nutrient status to mitochondrial motility and dy-
namics in the pancreatic beta-cell. K.T. was supported by a National Science Foun-
dation Graduate Research Fellowship under Grant No. DGE-0741448, and Levinsky Fellowship from Boston University School of Medicine. O.S. is funded by NIH grants RO1 DK35914, RO1 DK56690, and RO1 DK074778.
12.18 KNOCKDOWN OF VOLTAGE-DEPENDENT ANION CHANNELS 1 AND 2 INHIBITS MITOCHONDRIAL FISSION BY DECREASING BINDING OF DYNAMIN-RELATED PROTEIN 1 TO MITOCHONDRIA

Eduardo Maldonado1, David DeHart1, Monika Beck Gooz1, Heather Redbeau1, and John Lemasters2

1Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 70 President Street/MSC 140, Drug Discovery Building. DD506, Charleston, SC, 29425, 2Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, 70 President Street/MSC 140, Drug Discovery Building. DD506, Charleston, SC, 29425, *Biophysicists, Institute of Theoretical and Experimental Biophysics, 14 22 92 Russia, Puschino, Moscow Pus-chino, Russian Federation.

Background: In cancer cells, mitochondria continuously undergo fusion and fission. Mitochondrial fission involves the binding of dynamin-related protein-1 (Drp1) with mitochondrial fission factor mitofusin-1 and -2 (MFN1 and MFN2). Mitochondrial dynamics is important for cellular viability and cellular decision to apoptosis. In addition, mitochondrial fission determines mitochondrial fusion/fission. Assessing the expression of the mitochondrial fission protein Drp1 revealed a potential role of Drp1 in the development of myosteatosis and associated chronic muscle dysfunction.

1Dept. of Physical Med. & Rehabilitation, Kaohsiung Med. Univ., 807, Taiwan. 2Dept. of Physical Med. & Rehabilitation, Kaohsiung City, 807, Taiwan. 3Dept. of Physical Med. & Rehabilitation, Kaohsiung Municipal Ta-Tung Hosp., 807, Taiwan. 4Dept. of Pharmacology, Penn State Hershey Coll. of Medicine, 100, Shih-Chuan 1st Rd., Kaohsiung City, 807, Taiwan. 5Grad. Inst. of Clinical Med., Kaohsiung Med. Univ., 100, Shih-Chuan 1st Rd., Kaohsiung City, 807, Taiwan. 6Dept. of Physical Med. & Rehabilitation, Kaohsiung Med. Univ., 100, Shih-Chuan 1st Rd., Kaohsiung City, 807, Taiwan. 7Grad. Inst. of Clinical Med., Kaohsiung Med. Univ., 100, Shih-Chuan 1st Rd., Kaohsiung City, 807, Taiwan. 8Dept. of Beauty Sci., Meiko Univ., 23, Pinggang Rd., Neipu, Pingtung, 91020, Taiwan. 9Dept. of Physical Med. & Rehabilitation, Kaohsiung Municipal Hsin-Kang, No.4,82, Shannung Rd., Saoaogang District, Kaohsiung City, 812, Taiwan. 10Dept. of Physical Med. & Rehabilitation, Kaohsiung Med. Univ. Hospital, Number 100, Tzyou, 1st Rd., Kaohsiung City, 807, Taiwan.
Mitochondria control cellular homeostasis through maintaining proper bioenergetic programs and signaling mechanisms. Mitochondrial dysfunction in chronic metabolic and inflammatory diseases such as obesity, diabetes, chronic kidney disease, etc., underscores the significance of this organelle in maintaining normal health. Mitochondria integrate the cellular bioenergetic program, a unique set of bioenergetic relationships between the individual parameters of the oxidative phosphorylation (basal, ATP-linked, proton-leak, maximal, reserve capacity and non-mitochondrial respiration). These parameters demonstrate distinct aspects of mitochondrial function and their interdependence. Alteration in these programs causes cellular stress and disease, which suggests that identifying the defects associated with the bioenergetic program can be used to explain mechanisms of mitochondrial dysfunction in chronic inflammatory diseases. The objective of the study is to determine the bioenergetic health index (BHI, a single number that integrates the bioenergetic parameters) and relationships between the parameters that form the bioenergetic program in healthy subjects and chronic kidney disease patients. Methods: Using the mitochondrial stress test, bioenergetic parameters were determined in peripheral blood monocytes that are freshly isolated from healthy subjects (n=50) and chronic kidney disease patients (n=40) using the extracellular flux analyzer. The BHI was determined using the formula BHI = (Reserve Capacity x ATP-Linked Respiration)/(Proton Leak x Non-Mitochondrial Respiration). The bioenergetic parameters were compared using multivariate analysis and linear regression methods. Results: Compared to the healthy subjects, chronic kidney disease patients demonstrate a significantly lower BHI. Multivariate analysis of the bioenergetic parameters in healthy subjects show a high correlation between basal mitochondrial respiration and ATP-linked respiration (R²=0.92, p<0.0001). Basal respiration is also correlated well with maximal (R²=-0.428, p<0.0001) and with non-mitochondrial respiration (R²=0.437, p<0.0002). In chronic kidney disease, the correlation between basal respiration and ATP-linked respiration remains strong, but the correlation that existed between other bioenergetic parameters weakened considerably. Conclusion: These novel findings suggest that BHI can be used to determine the bioenergetic health of individual subjects. The distinct relationships between mitochondrial bioenergetic parameters suggest their potential utility in gaining insights into the mechanism of diseases with bioenergetic dysfunction.

12.22 MITOCOHOI RESPIRATORY CAPACITY AND COUPLING CONTROL DECLINE WITH AGE IN HUMAN SKELETAL MUSCLE

Chase Porter1, Nicholas Hamre2, Matthew Cotter3, Nisha Bhattacharji, Paul Reid4, Edgar Dillnor, William Duffner5, Demidmaa Tuvdendorj5, Melinda Sheffield-Moore5, Flora Volf6, Labros Sideris6, Blake Rasmussen6, and Elizabeth Barns76

1Dept. of Surgery, Univ. of Texas Med. Branch, Shriners Hosp. for Children, 815 Market St., Galveston, TX, 77550, 2Dept. of Pediatrics & Dept. of Geriatrics, Univ. of Arkansas for Med. Sciences, 4301 W. Marutham St., Little Rock, AR, 72205, 3Meta-
bolism, Arkansas Children’s Hospital. Res. Inst., and Arkansas Children’s Nutrition Ctr., 1 Children’s Ave., Little Rock, AR, 72202, 4Rehabilitation Sci., Univ. of Texas Med. Branch, 301 University Blvd., Galveston, TX, 77550, 5Dept. of Internal Med. Univ. of Texas Med. Branch, 301 University Blvd., Galveston, TX, 77550, 6Dept. of Nutrition & Metabolism, Univ. of Texas Med. Branch, 301 University Blvd., Galveston, TX, 77550.

Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that demargination in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty four young (28±7 yrs) and thirty one older (62±8 yrs) adults were studied. Mitochondrial respiration was determined in permeabilized muscle fibers from the m. vastus lateralis, after the addition of substrates followed by either oligomycin or cytochrome c chloride phenyl hydrazine (CCCP). Thereafter, mitochondrial coupling control was calculated from the flux control ratios for CCCP and the coupling control ratio and factor for oligomycin. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects (55.3±4.2 vs. 40.9±3.1 pmol/sec/mg; P<0.001) and with non-mitochondrial respiration (R²=0.437, p<0.0002). In chronic kidney disease, the correlation between basal respiration and ATP-linked respiration was determined to remain strong, but the correlation that existed between other bioenergetic parameters weakened considerably. Conclusion: These novel findings suggest that BHI can be used to determine the bioenergetic health of individual subjects. The distinct relationships between mitochondrial bioenergetic parameters suggest their potential utility in gaining insights into the mechanism of diseases with bioenergetic dysfunction.

2015 APS Conference
Physiological Bioenergetics: From Bench to Bedside
ABSTRACTS OF INVITED AND VOLUNTEERED PRESENTATIONS
and APAP. This work was supported by National Institute of Health grant R01 AM018841 (to SM Bailey) and AM013395 (to VM Darley-Usmar).

12.25 INCREASE MITOCHONDRIAL UNCOUPLING IN STORED PLATELETS
Hiroto Sawada1, Saranya Rav1, Michelle Johnson1, Bala Chacko2, Philip Kramer1, and Victor Darley-Usmar1
1Dept. of Pathology, Univ. of Alabama at Birmingham, 901 19th St S, BMR 2 Rm. 547, Birmingham, AL, 35294-2180.

Stored platelet concentrates have been shown to have decreased quality which could ultimately lead to worsening patient outcomes. This phenomenon termed the platelet storage lesion is characterized by the change in cell morphology, decreased aggregation, increased glycolytic rate, and decreased mitochondrial function, the mechanisms of which are not clearly understood. In the present study, we measured the functional changes in mitochondrial and glycolytic function between freshly isolated and stored platelet concentrates. We used platelets between storage days 6-9 and measured mitochondrial and glycolytic bioenergetics using the Seahorse XF technology. Stored platelets showed decreased recovery after hypotonic stress compared to freshly isolated platelets although stored platelets did not show any differences in thrombin-mediated aggregation. The bioenergetic health index (BHI), an index of overall health of the platelets was decreased in stored platelets which were ascribed to a 10% decrease in basal oxygen rate, a 190% increase in proton leak and no change in maximal oxygen consumption compared to the freshly isolated cells. When mitochondrial ATP production was inhibited, the glycolytic rate was increased in stored platelets. In summary, stored platelet concentrates showed a decrease in oxidative phosphorylation that was predominately driven by an increase in mitochondrial proton leak.

12.26 CROSSTALK BETWEEN MITOCHONDRIAL ACETYL-CoA METABOLISM, CYTOSKELETON MODIFICATIONS, AND AUTOPHAGY
Michael Stoner1, and Iain Scott1
1Vascular Med. Inst./Div. of Cardiology, Univ. of Pittsburgh, BIST E1253, 200 Lothrop St., Pittsburgh, PA, 15261.

Lysine acetylation, a well characterized post-translational modification, is tightly coupled to the nutritional status of the cell. This connection occurs as the availability of the main substrate for acetylation, acetyl-CoA, fluctuates greatly with changing metabolic conditions. Recent studies have demonstrated that acetyl-CoA levels act as an indicator of cellular nutrient status, and increased abundance of this metabolite can block the induction of cellular recycling programs. Here we investigated the crosstalk between mitochondrial metabolic pathways and autophagy, using biochemical inhibitors of mitochondrial acetyl-CoA production. Treatment of cells with one compound, a co-factor of several mitochondrial metabolic protein complexes, led to the unexpected hyperacetylation of α-Tubulin in the cytosol. This acetylation was catalyzed by the α-Tubulin acetyltransferase, αTAT, and was dependent on a loss in function of the cytosolic histone deacetylase, HDAC6. Finally, we show that α-Tubulin hyperacetylation alters the flux of substrates through autophagy-related pathways, which may in turn limit the ability of cells to remove dysfunctional mitochondria through autophagic mechanisms. Based on these results, we hypothesize that acetyl-CoA derived from mitochondrial sources may act as a modulator of cellular recycling pathways, by regulating the cytoskeletal transport of substrates to the autophagy machinery. This work is funded in part by National Institutes of Health Award HL116729.

12.27 STUDY ON THE EFFECTS OF ALCOHOL AND CANNABINOL TREATMENT ON HYPOTHALAMIC PITUITARY GONADAL AXIS IN MALE WISTAR RATS
Christophor Akintoye1, Shimile Kang1, and Mwooro Acolode2
1Physiology, Ade Babalola Univ., Km 8.5 Ade Babalola Way, Ado-Ekiti, Ekiti State, Nigeria., Ado-Ekiti, 234, Nigeria, "Med. & Surgery, Bingham Univ., No 1, Noad Rd., P.O. Box 63, Jos Plateau State., Jos, 234, Nigeria. This study investigated the effects of oral administration of alcohol and cannabinol on the hypothalamic pituitary gonadal system in male adult rats. Twenty five male rats were purchased from NIPRD and were divided into five groups containing five rats each. A period of 48 days period of study was obtained from National Institute for Pharmaceutical Research and Development (NIPRD) and the experiment conducted was in conformance with guidelines for experimental procedures as set forth in the Declaration of Helsinki and the APS Guiding Principles in the care and Use of Animals. Group one serves as the control, group two was administered 5mg/kg body weight methanol, group three was given 3mg/kg body weight as 25%/v/v alcohol, group four was given 10mg/kg body weight cannabinol and group five was treated with alcohol (3mg/kg body weight as 20%/v/v) and cannabinol (10mg/kg body weight). Drug administration was via oral route throughout the experimental period. At the end of the experimental period, blood was collected via the retro-orbital sinus under ether anaesthesia and the brain was dissected and immediately fixed. Sperm analysis was carried out exposing the testisis together with the epididymis and the epididymis was carefully separated and caput was removed. The caput was then transferred unto a pre-warmed saline solution to release some semen unto the slide surface. The animals were anesthetized and sacrificed cervical dislocation and their reproductive organs were removed and weighed immediately. There was no significant change in the body weight, however, there was a significant change in the percentage weight difference in the experimental groups when compared with the control group. Serum level of testosterone of the groups treated with alcohol, cannabinol, alcohol plus cannabinol were significantly decreased (p<0.05) when compared with the control rats. However, there were reduction in sperm motility and sperm count of rats exposed to alcohol, cannabinol, alcohol plus cannabinol treated rats in comparison to the control rats. The histological section showed alteration in the hypothalamic and testicular cytoarchitecture in groups treated with alcohol and cannabinol treated rats, while there was reversal of this in the groups co-treated with quercetin. The results suggest that alcohol and cannabinol administration have deleterious effect on male reproductive activities (system) in rats. Keywords: alcohol, cannabinol, HPG-axis, histomorphology, sperm content, hormone profile.

12.28 REGULATION OF CARDIAC AUTOPHAGY BY ADIPONECTIN UNDER HYPOXIC/ISCHEMIC STRESS
James Won Suk Jahng, Yee Kwan Chan, Hye Kyung Song, Hye Ho Cho & Gary Sweaney.
Dept. of Biology, York Univ., Toronto, Canada.

Adiponectin is a hormone secreted from adipose tissue which confers anti-inflammatory, anti-diabetic and cardioprotective effects. The role of autophagy in metabolic dysfunction and heart failure is now apparent, and recent work indicates regulation of autophagy by adiponectin is of functional significance. We used Adiponectin knock-out (Ad-KO) mice ± ischemia induced by coronary artery ligation (CAL) and Hf2 cardiomylopathy ± hypoxia to investigate the significance of adiponectin in regulating autophagy. We used Western blotting for LC3-II and p62 indicated less autophagic clearance after CAL in Ad-KO versus wild type mice. Importantly, these changes in autophagy corresponded with enhanced CAL-induced necrosis and apoptosis in Ad-KO mice, as shown by HMGB-1 and cleaved caspase-3 levels, respectively. We also found higher belrin Bcl-2 ratio in ischemic Ad-KO hearts and levels of the pro-apoptotic protein Bax were induced to a greater extent by ischemia in Ad-KO versus wild type mice. Echocardiography analysis showed that CAL-induced cardiac dysfunction was exaggerated in Ad-KO mice. In conclusion, our data suggests that adiponectin is an important mediator of autophagic flux in cardiomyocytes and that lack of autophagic activity in hearts of Ad-KO mice after ischemia contributes to enhanced cell death and cardiac dysfunction.

12.29 LIPOCALIN-2 REGULATES CARDIOMYOCYTE AUTOPHagy TO CONTROL APOPTOSIS AND INSULIN SENSITIVITY
Hye Kyung Song, Yee Kwan Chan, Meng Han, James Won Suk Jahng & Gary Sweaney.
Dept. of Biology, York Univ., Toronto, Canada.

Lipocalin-2 (Lcn2, also termed neutrophil gelatinase-associated lipocalin (NGAL)) is a proinflammatory adipokine which has become established as an important biomarker for kidney disease. It has also been implicated in the pathogenesis of heart failure and as a potential biomarker. Here we investigated it's direct effects on autophagy in H9c2 cardiomyocytes and the functional consequences. After treating H9c2 cells with recombinant Lcn2 (1 μg/ml, 1 hour) we used transmission electron microscopy, Western blotting and immunofluorescence for LC3-II, stable overexpression of tandem fluorescent RFP-GFP-LC3, DQ-BSA degradation and MagicRed assay for lysosomal cathepsin activity to show that Lcn2 reduced autophagic flux. Lcn2 also reduced phosphoULK1 S555, increased phosphoULK1 S757. Importantly, this correlated with reduced insulin sensitivity. We then created an autophagy-deficient H9c2 cell model by overexpressing a dominant-negative Atg5 mutant and found that reduced autophagy levels also induced insulin resistance, and that adding rapamycin after Lcn2 could stimulate autophagy and recover insulin sensitivity. We also observed that long-term Lcn2 treatment contributed to hyperoxynegation-induced apoptosis in H9c2 cells via reducing autophagy. We have also shown that Lcn2 in...
increased intracellular iron levels, and reactive oxygen species production, to mediate pro-apoptotic effects. In conclusion, our study indicated that Lcn2 treatment caused insulin resistance and apoptosis and the use of gain and loss of function approaches elucidated a causative link between autophagy and these effects of Lcn2.

13.0 MITOCHONDRIAL GENETIC AND METABOLIC PROGRAMS

13.1 NOVEL SIGNALING PEPTIDES FROM THE MITOCHONDRIAL GENOME
Changhan David Lee
Gerontology, Univ. of Southern California, 3715 McClintock Ave., Rm. B12, Los Angeles, CA, 90089.
Mitochondria are known to be functional organelles, but their role as a signaling unit is increasingly being appreciated. We have recently identified a short open reading frame (sORF) within the mitochondrial 12S rRNA encoding a 16 amino acid peptide named MOTS-c (mitochondrial open-reading-frame of the twelve S rRNA -c) that regulates insulin sensitivity and metabolic homeostasis [1-3]. Its primary target organ appears to be the skeletal muscle and its cellular actions inhibit the folate cycle and its tethered de novo purine biosynthesis, causing a significant accumulation of AICAR levels concomitantly with AMPK activation. MOTS-c treatment in mice prevented age-dependent and high-fat diet-induced insulin resistance, as well as diet-induced obesity. These results suggest that mitochondria may be more actively engaged in regulating metabolic homeostasis than previously recognized, through the production of peptides encoded within its genome that act at the cellular and organismal level.

13.2 MITOCHONDRIAL NUCLEAR GENETIC CROSS TALK AND DISEASE: “MITO-MENDELIAN” GENETICS
Scott Ballinger
Pathology, Univ. of Alabama at Birmingham, BMR2 530, 1720 2nd Ave. S., Birmingham, AL, 35294.
The genetic basis for common disease is generally thought to be “complex” involving both environmental – genetic interactions. Interestingly, the evolution and origins of the eukaryotic cell are thought to be the consequence of an estimated 1.5 billion years of endosymbiosis and adaptation to the environment involving mitochondrial-nuclear, or “Mito-Mendelian” genetic interactions. Herein, we suggest that Mito – Mendelian genetics, plays a major role in influencing cellular metabolism and response to disease risk factors and thus, susceptibility to disease development. These concepts will be discussed in the context of cardiovascular and metabolic disease.
Funding was provided by the U.S. Army Medical Research & Material Command (W81XWH-07-1-0540d); National Institutes of Health (HL94518 and HL103859); and the Diabetes Research Center Bioanalytical Redox Biology Core (P30 DK079626).

13.3 THE CROSSTALK BETWEEN MITOCHONDRIAL FUNCTION, THE EPIGENOME AND GENE EXPRESSION
Janine Santos
Epigenetics & Stem Cell Biology, NIEHS, 111 TW Alexander Dr., Durham, NC, 27709.
Mitochondria are organelles known for their role in energy production through the process of oxidative phosphorylation (OXPHOS), a byproduct of which is reactive oxygen species (ROS). Mitochondrial function also gives rise to a diverse range of metabolic products that are known to function as co-factors of enzymes that epigenetically regulate the nuclear genome. We hypothesize that some of these metabolites may be rate-limiting for epigenetic reactions that regulate gene expression in the nucleus. The data obtained so far indicate that loss of OXPHOS function is accompanied by changes in some mitochondrial metabolites, decreases in histone acetylation, modulation of DNA methylation and changes in gene expression. Further experiments are ongoing to further tease out this crosstalk. This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.
AUTHOR INDEX

*Indicates Invited Speaker

Si, Y., 7.7
Sidossis, L., 12.22
Sin, J., 3.2
Smuder, A. J., 7.12, 9.5
Søgaard, D., 7.20
Sollanek, K. J., 7.12
Stenmark, K., 7.11
St-Jean Pelletier, F., 7.2
Stoner, M., 12.26
Stotland, A., 3.2
St-Pierre, D. H., 7.2
Stuart, J., 12.14, 12.23
Subramaniam, S., 12.10
Sung, H. K., 12.28, 12.29
Swain, T., 7.3
Sweeney, 12.28, 12.29
Swerdlow, R.*, 6.3, 7.5

T
Talbert, E. E., 7.12
Timmins, P., 12.20
Tinius, R., 12.5
Tkachev, V., 12.13
Tolö, J., 7.4
Torre-Amione, G., 12.6
Trudeau, K., 3.4, 7.24, 12.15, 12.16
Tuvdendorj, D., 12.22
Twig, G., 7.24

U
Udoh, U., 7.3
Ulanet, D. B., 7.7

V
Valcin, J., 3.6, 7.3
Vallée, J., 7.2
van Houten, B.*, 11.1
Vega, R., 7.21
Volpi, E., 12.22

W
Wagener, K., 7.1
Wallace, D. W.*, 1.1, 7.19
Walter, K., 12.3
Wang, Y., 7.18
Weber, S., 7.5
Weidling, I., 7.5
Weinstein, A., 12.1
Weston, P., 7.11
Weyand, C., 12.7
Wikstrom, J., 7.24
Wilkins, H., 7.5
Wipf, P., 11.1
Wright, J., 12.4
Wu, Y-J., 12.19

X
Xu, K., 12.11

Y
Yoon, Y., 7.8

Z
Zhang, A., 12.6
Zhang, J., 7.17
Zhang, J.*, 2.2
Zhang, X., 7.21
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of Muscular Contraction</td>
<td>J.A. Rall</td>
<td>Describes the evolution of muscular contraction concepts since the discovery of sliding filaments. Includes detailed scientific histories of principal investigators in the field. Features information on contraction coupling and the role of calcium in contraction and relaxation.</td>
</tr>
<tr>
<td>Essays on the History of Respiratory Physiology</td>
<td>J.B. West</td>
<td>The book is written for scientists but is accessible to interested non-scientists. Covers the history of significant people and events over the whole course of respiratory physiology. Discusses how historical events such as the Renaissance and Enlightenment shaped respiratory physiology.</td>
</tr>
<tr>
<td>The Rise of Fetal and Neonatal Physiology</td>
<td>L.D. Longo</td>
<td>Constitutes a definitive history of an important field of physiology, that which concerns the developing fetus and newborn infant. Addresses the contributions of basic scientists and physiologists to clinical problems of prematurity, such as the causes of premature labor, respiratory distress syndrome, retinopathy of prematurity, and thermoregulation. Includes contributions from over 40 leading scientists in this field.</td>
</tr>
<tr>
<td>Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory</td>
<td>D.H. Evans</td>
<td>An exciting document for former, current and future scientists and friends of the Mount Desert Island Biological Laboratory (MDIBL). Provides a scientific genealogy of the MDIBL. Combines research, administrative and social histories of the MDIBL.</td>
</tr>
<tr>
<td>Sodium and Water Homeostasis: Comparative, Evolutionary and Genetic Models</td>
<td>K.A. Hyndman, T.L. Pannabecker</td>
<td>Features current innovative topics in the field of sodium and water homeostasis. Features domestic and international contributions from experts in the field. Covers multiple organ systems and cellular processes.</td>
</tr>
</tbody>
</table>

www.the-aps.org/books
2015 APS Conference
Cardiovascular, Renal and Metabolic Diseases: Physiology and Gender

APS Council

President
Patricia E. Molina
Past President
David M. Pollock
President-Elect
Jane F. Reckelhoff
Barbara T. Alexander
John Chatham
David Guttermann
M. Harold Laughlin
Lisa Leon
Marshall H. Montrose
Rudy M. Ortiz
Irene C. Solomon
Bill J. Yates

Ex officio Members

Hannah V. Carey
Martin Frank
Meredith Hay
Robert Hester
Kevin C. Kregel
Wolfgang Kuebler
Curt Sigmund
J. Michael Wyss

Conference Organizers

Jane F. Reckelhoff (Chair)
Univ. of Mississippi Med. Ctr.
Heddwen Brooks
Univ. of Arizona, Tucson
Kate M. Denton
Monash Univ., Australia
Rolando J. Ramirez
Univ. of Akron
Vera Regitz-Zagrosek
Charité Univ., Germany
Javier Salazar
Univ. of Murcia, Spain
Willis K. Samson
St. Louis Univ. Sch. Med.
Kathryn Sandberg
Georgetown Univ.
James R. Sowers
Univ. of Missouri Sch. Med.
Jennifer Sullivan
Georgia Regents Univ.
You-Lin Tain
Chang Gung Memorial Hosp., Taiwan
Rita Tostes
Univ. of São Paulo, Brazil

Acknowledgements

The Meeting Organizers and The American Physiological Society gratefully recognize the generous financial support from the following:

American Heart Association Council
Council on Hypertension

UMMC
Women’s Health Research Center
<table>
<thead>
<tr>
<th>Tuesday, November 17</th>
<th>Wednesday, November 18</th>
<th>Thursday, November 19</th>
<th>Friday, November 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM Registration</td>
<td>7:00 AM Registration</td>
<td>7:30 AM Registration</td>
<td>7:30 AM Registration</td>
</tr>
<tr>
<td>7:50—8:00 AM</td>
<td>8:00—10:00 AM</td>
<td>8:00—10:00 AM</td>
<td>8:00—10:00 AM</td>
</tr>
<tr>
<td>Welcome</td>
<td>Symposia V</td>
<td>Symposia VIII</td>
<td></td>
</tr>
<tr>
<td>S. Ananth Karumanchi</td>
<td>Developmental Programming of Cardiovascular, Renal and Metabolic Diseases: Roles of Gender/Sex</td>
<td>Pregnancy and Pre-eclampsia</td>
<td>Christine Marie-Bilkan</td>
</tr>
<tr>
<td>8:00—10:00 AM</td>
<td>Javier Salazar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symposia I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune System and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regenerative Medicine—Impact of Gender/Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heddwen Brooks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00—10:30 AM</td>
<td>10:00—10:30 AM</td>
<td>10:00—10:30 AM</td>
<td>10:00—10:30 AM</td>
</tr>
<tr>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
</tr>
<tr>
<td>10:30 AM—12:30 PM</td>
<td>10:30 AM—12:30 PM</td>
<td>10:30 AM—11:30 AM</td>
<td>10:30 AM—11:30 AM</td>
</tr>
<tr>
<td>Symposia II</td>
<td>Symposia VI</td>
<td>Symposia IX</td>
<td></td>
</tr>
<tr>
<td>Non-reproductive Actions of Sex Hormones/Receptors—A</td>
<td>Non-reproductive Effects of Sex Hormones/Receptors—B</td>
<td>Population Studies—Gender/Sex in CVD, Renal Disease, and Metabolic Syndrome</td>
<td>Rita Tostes</td>
</tr>
<tr>
<td>Rolando J. Ramirez</td>
<td>Kate M. Denton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30—1:30 PM</td>
<td>12:30—1:30 PM</td>
<td>11:35—11:45 AM</td>
<td></td>
</tr>
<tr>
<td>Lunch</td>
<td>Lunch</td>
<td>Closing Remarks</td>
<td></td>
</tr>
<tr>
<td>1:30—2:30 PM</td>
<td>1:30—2:30 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poster Session I</td>
<td>Poster Session II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30—3:50 PM</td>
<td>2:30—3:00 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symposia III</td>
<td>Plenary Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuro Control of Cardiovascular, Renal and Metabolic Diseases: Impact of Gender/Sex</td>
<td>Kathryn Sandberg (Chair)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willis K. Samson</td>
<td>Janine Clayton (Speaker)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:55-4:30</td>
<td>3:00—5:00 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distinguished Investigator Award</td>
<td>Symposia VII</td>
<td>Obesity, Metabolic Syndrome, Gender/Sex</td>
<td></td>
</tr>
<tr>
<td>Jennifer Sullivan, Chair</td>
<td>James R. Sowers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chris Baylis, Speaker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:30—8:30 PM</td>
<td>5:00—6:00 PM</td>
<td>7:00—9:30 PM</td>
<td></td>
</tr>
<tr>
<td>Welcome and Opening Reception</td>
<td>Career Development Session</td>
<td>Banquet and Awards Ceremony</td>
<td></td>
</tr>
<tr>
<td>Jennifer Sasser</td>
<td>Erica Wehrwein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica Wehrwein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Information

Location:
The 2015 APS Conference: Cardiovascular, Renal and Metabolic Diseases will be held November 17—20, 2015 at the Crowne Plaza Annapolis Hotel, 173 Jennifer Rd., Annapolis, MD 21401, USA, telephone (410) 266-3131, FAX: (410) 266-6247.

Onsite Registration Hours:
- Tuesday, November 17…………......3:00—8:00 PM
- Wednesday, November 18……..7:00 AM—5:30 PM
- Thursday, November 19……….7:30 AM—5:30 PM
- Friday, November 20……………..7:30 —11:00 AM

On-Site Registration Fees:
- APS Member...$650
- APS Retired Member.. $450
- Nonmember ..$800
- Postdoctoral ...$500
- Student ... $450

The registration fee includes entry into all scientific sessions, poster socials, opening reception, and the closing conference banquet.
*Must have a ticket for entry.

Payment Information:
Registrants may pay by institutional or personal check, traveler’s check, MasterCard, VISA or American Express or in United States Dollars. Checks must be payable to “The American Physiological Society” and drawn on a United States bank payable in US dollars.

Student Registration:
Any student member or regularly matriculated student working toward a degree in one of the biomedical sciences is eligible to register at the student fee. Nonmember postdoctoral fellows, hospital residents and interns, and laboratory technicians do not qualify as students. Nonmember students who register onsite must provide a valid university student ID card. APS student members should present their current APS membership card indicating their student category status.

Postdoctoral Registration:
Any person who has received a Ph.D. degree in physiology or related field, **within four years** of this meeting, as attested to by the department head is eligible to register at the postdoctoral fee. A statement signed by the department head must accompany the registration form and remittance when registering.

Press:
Press badges will be issued at the APS registration desk, only to members of the working press and freelance writers bearing a letter of assignment from an editor. Representatives of allied fields (public relations, public affairs, etc.) must register as nonmembers.

Program Objective:
The role that sex steroids and gender play in the physiology and pathophysiology of cardiovascular and renal disease (CVRD) is becoming an increasingly more important area of research. The program will be balanced to include both basic science and clinical studies, ranging from the gene to the whole animal or human. The global aspect of the conference is to gather a critical mass of scientists with interests and expertise in the role of sex steroids and/or the gender differences in the physiology of CVRD, and to promote an exchange of ideas to foster collaboration that will further advance this important line of scientific investigation. In addition, this conference will be to increase the awareness of sex disparities in CVRD that need to be understood in order to ultimately improve clinical outcomes for men and women and promote individualized health care.

Target Audience:
The intended audience for this conference includes all levels of researchers working in the field of gender disparities in cardiovascular, renal and metabolic diseases. This conference will provide a diverse program that covers many of the organ systems in which sex steroids and gender have been shown to be important in cardiovascular diseases.

Photography is not permitted during the scientific sessions or in the poster room

Don’t forget to join us at the Welcome and Opening Reception

Admiral’s Ballroom

Tuesday, November 17

6:30—8:30 PM
DAILY SCHEDULE

WEDNESDAY, NOVEMBER 18, 2015

Welcome

1.0 WELCOME ANNOUNCEMENT
Wednes., 7:50—8:00 AM, Wye Room.

Chairs:

Jane F. Rockelhoff, Univ. of Mississippi Med. Ctr.

Symposia I

2.0 IMMUNE SYSTEM AND REGENERATIVE MEDICINE-IMPACT OF GENDER AND SEX
Wednes., 8:00—10:00 AM, Wye Room.

Chair:
Hedwijn Brooks, Univ. of Arizona, Tucson.

8:00 AM

2.1 Estrogen Receptor Alpha Enhances Loss of Tolerance to Nuclear Antigens and Immune Cell Activation Induced by the Sle1 Lupus Susceptibility Allele and is Responsible for the Sex Bias Associated with Sle1. Karen Gould, Univ. of Nebraska, Omaha.

8:20 AM

2.2 Role of T Cells in Development of Cardiovascular Disease and Hypertension. Jennifer Sullivan, Georgia Regents Univ.

8:40 AM

9:00 AM

2.4 Lower Levels of Interleukin-6 in Female Mice at Days 1 and 3 Post-myocardial Infarction Attenuate Neutrophil Infiltration, Rupture, and Left Ventricular Dilation. Kristine DeLori-Fennell, Univ. of Mississippi Med. Ctr., Jackson. (5.11).

9:15 AM

2.5 The Effects of Testosterone and Oxidative Stress on Neuroinflammatory Signaling in Dopamine Neurons. Shakeela Holmes, Univ. of North Texas Hlth. Sci. Ctr. Sch. of Pharmacy, Amarillo, TX.

9:30 AM

2.6 Sexually Dimorphic Myeloid Inflammatory and Metabolic Responses to Diet-induced Obesity. Kanakadurga Singar, Univ. of Michigan. (6.17).

9:45 AM

2.7 Doxoru bicin Reduces Proinflammatory Mediator Expression in Brain and Pial Arteries from Ovariectomized Female Rats. Rayna Gonzales, Univ. of Arizona, Phoenix. (14.7).

Symposia II

3.0 NON-REPRODUCTIVE ACTIONS OF SEX HORMONES AND RECEPTORS-A
Wednes., 10:30 AM—12:30 PM, Wye Room.

Chair:
Rolando J. Ramirez, Univ. of Akron.

10:30 AM

3.1 Testosterone Therapy in Men with Testosterone Deficiency (TD): Advances and Controversies. Abdulfaried M. Traish, Boston Univ. Sch. of Med.

10:50 AM

3.2 Differential Body Weight and Blood Pressure Responses to Normal Versus High-fat Diet in Melanocortin-4 Receptor-deficient Pregnant Rats. Frank Spradley, Univ. of Mississippi Med. Ctr.

11:10 AM

3.3 GPER and Vascular Function. Sarah Lindsey, Tulane Univ.

11:30 AM

3.4 Contribution of the Nuclear Progesterone Receptor (nPR) to Breathing Stability and Hypercapnic Ventilatory Response in Adult Male Mice. Sofien Laouafa, Univ. of Laval, Quebec, Canada. (13.7).

3.5 Functional and Structural Changes in Internal Pedal Arteries Underlie Erectile Dysfunction Induced by Androgen Deprivation. Rieve Lopes, Univ. of São Paulo, Brazil. (4.8).

12:00 Noon

3.6 6β-Hydroxytestosterone, A Cytochrome P450 1B1-Derived Metabolite of Testosterone Plays an Important Role in Renal Dysfunction Associated with Angiotensin II-Induced Hypertension in Male Mice. Ajeeeth Pingli, Univ. of Tennessee Hlth. Sci. Ctr., Memphis. (7.13).

12:15 PM

3.7 Attenuation of Cardiac Aging and Leptin-dependant Cardioprotection in Long-lived oMUPA Mice. Edith Hochhauser, Rubin Med. Ctr., Israel. (5.9).

Poster Session I

4.0 CARDIOVASCULAR DISEASE
Wednes., 1:30—2:30 PM, Rhode/Severn Room.

Poster Board

1 4.1 Matrix Metalloproteinase-9 is Critical for 2-Methoxyestradial Mediated Angiogenesis Type 1 Receptor Down-Regulation. B. Ogola, Y. Zang, and T. Thekumkara Texas Tech Univ. Hlth. Sci. Ctr. Sch. of Pharmacy, Amarillo, TX.

5 4.5 A Study of the Potential Risk Factors of Cardiovascular Diseases in Young Saudi females. L. Al-Assoom Univ. of Dammam, Saudi Arabia.

6 4.6 Assessment of Gender and Age-dependent Patterns of Cardiovascular Remodeling in Spontaneously Hypertensive Rats (SHR). S. Al-Ghur, I. Kopaliani, B. Zatschler, R. Galli, M. Kasper, and A. Deussen, Techn. Univ. of Dresden, Germany.

8 4.8 Functional and Structural Changes in Internal Pedal Arteries Underlie Erectile Dysfunction Induced by Androgen Deprivation. R. Lopes, K. Neves, M. Barbosa, V. Oliwon, S. Rugins, J. Antunes, L. Ramalho, F. Carneiro, and R. Tostes Univ. of São Paulo, Ribeirão Preto, Brazil.

Photography is not permitted during the scientific sessions or in the poster session room.
DAILY SCHEDULE

Poster Board

Poster Session II

5.0 CARDIAC

Poster Board

12 5.2 Haemostatic and Rheologic Factorials as Determinants of Acute Myocardial Infarctions in Nigerians. E. Nwalli, and O. Ajayi. Univ. of Benin, Benin City, Nigeria.

14 5.4 Indices of Cardiac Sympathetic Activity During Lower Body Negative Pressure in Men and Women Throughout the Menstrual Cycle. H. Edgell, and R. Hughson. York Univ., Toronto, Canada, and Univ. of Waterloo, Canada.

16 5.6 Angiotensin II Modulates Sex Steroid Metabolizing Enzyme and Receptor Expression in Cardiac Fibroblasts From Male and Female Rats. L. Mashavpoddii, R. Gonzales, and T. Hale. Univ. of Arizona, Phoenix.

17 5.7 Cardiac Remodeling in Female Hearts by Kv11.2 Subunit. J. Tur, K. Chapalambadugu, T. Padawer, and S. Tipparaju. Univ. of South Florida.

Poster Session III

6.0 METABOLISM AND DIABETES

Poster Board

24 6.3 Withdrawn.

29 6.8 High Fructose Intake Exacerbates the Impairment of Mesenteric Arterial Function Compared to Glucose in Female Rats: Possible Involvement of EDHF Contribution in Modulating Vascular Reactivity. S. Shaligram, G. Sangiueza, F. Akther, M. Alegret, J. C. Laguna, and R. Rahimian. Univ. of the Pacific, and Univ. of Barcelona, Spain.

Poster presenters...don’t forget that your poster is displayed only on the day you present.

Please remove your poster at the end of your presentation day. Unclaimed posters will be removed and stored by APS until the conclusion of the conference. Any unclaimed posters will be recycled.
46.1 Withdrawn.
46.3 Do Women Need to Lose More Weight than Men to Increase Circulating Adiponectin? X. Wang. Univ. of South Carolina, Columbia.
46.5 Increasing Leptin Sensitivity with Protein Tyrosine Phosphatase 1B Deletion Leads to More Severe Cardiac Alterations in Female than Male Mice. A-C. Huby, and E. J. Belin de Chanteméile. Georgia Regents Univ.
46.6 Sex Differences in Renal Sodium Handling in Mice on High-fructose and High-salt Diet. A. Rouch, L. Fan, B. Swar, and C. Watwuroocha. Oklahoma State Univ., Tulsa.
46.8 Sex Dimorphism In Plasma Soluble Promin Receptor (sPRR) Levels in Obese Patients Is Associated With Type 2 Diabetes Mellitus in Women But Not in Men. C. B. Rosales, D. Y. Arita, T. Thethi, V. Fonseca, L. G. Navar, and M. C. Prieto. Tulane Univ. Sch. of Med.
46.9 Sex Differences in Renal Gene Expression in a Diet Induced Obesity Model of Diabetic Nephropathy (DN). V. Halperin Kuhns, and J. Pluznick. Johns Hopkins Univ. Sch. of Med.

7.0 RENAL
Wednes., 1:30—2:30 PM, Rhode/Severn Room.

7.1 Molecular Mechanisms for Lower Plasma Potassium Set Point in Females. L. Veiras, A. Tran, D. Ralph, and A. McDonough. Univ. of Southern California, Los Angeles.
7.4 Apoptotic Cell Death In Renal Ischemia-Reperfusion Injury in Male and Female Spontaneously Hypertensive Rats (SHR). R. Cristip, and J. Sullivan. Georgia Regents Univ.
DAILY SCHEDULE

Primary Lecture
9.0 Distinguished Investigator Award
Wedns., 3:55—4:30 PM, Wye Room.
Chair: Jennifer Sullivan, Georgia Regents Univ.
3:55 PM

Career Session
10.0 Career Development Session
Wedns., 5:00—6:00 PM, Wye Room.

Thursday, November 19, 2015

Symposia V
11.0 Developmental Programming of Cardiovascular, Renal and Metabolic Diseases: Roles of Gender and Sex
Thurs., 8:00—10:00 AM, Wye Room.
Chair: Javier Salazar, Univ. of Murcia, Spain.
8:00 AM
11.1 Effect of Estrogen in Gender-dependent Fetal Programming of Adult Cardiovascular Dysfunction. Daliao Xiao, Loma Linda Univ. Sch. of Med.
8:20 AM
11.2 Sex Differences in Cardiovascular and Metabolic Risks Due to Early Life Stress. Analia Loria, Univ. of Kentucky, Lexington.
8:40 AM
11.3 Maternal Undernutrition Significantly Impacts Ovarian Follicle Number and Increases Ovarian Oxidative Stress in Adult Female Rats. Deborah Sloboda, McMaster Univ., Hamilton, Canada.
9:00 AM
11.4 Reduced Sleep Time During Pregnancy-Effects on Renal Morphology and Function of Female Offspring. Goumonr N. Gomes, Univ. of São Paulo, Brazil. (16.5).
9:15 AM
11.5 Delayed Effects of Perinatal Hypoxia on Adult Pulmonary Vessel Structure and Reactivity. Martin Vizek, Charles Univ., Prague, Czech Rep. (16.6).
9:30 AM
11.6 Sex Difference in Sensitization of Angiotensin (ANG) II-elicted Hypertension in Offspring of Hypertensive Rats. Baogian Xue, Univ. of Iowa. (16.7).
9:45 AM
11.7 Sex Differences in Cardiovascular Responses to Stress in Adult Rats Prenatally Exposed to Dexamethasone. Taben Hale, Univ. of Arizona, Phoenix. (16.8).

Symposia VI
12.0 Non-reproductive Effects of Sex Hormones and Receptors-B
Thurs., 10:30 AM—12:30 PM, Wye Room.
Chair: Kate M. Denton, Monash Univ., Melbourne, Australia.
10:30 AM
12.1 Androgen Effects on Endothelial Function in Women with Polycystic Ovary Syndrome. Nina Stachenfeld, Yale Univ.
10:50 AM
12.2 Mechanisms Involved in Cardioprotection in Females: Role of Estrogen and Estrogen Receptors (ERs). Elizabeth Murphy, NIH, NHLBI.

11:10 AM
12.3 Sex and Sex Hormone Effects in Cardiovascular Pathophysiology. Vera Regitz-Zagrosek, Chair. Univ., Berlin, Germany.
11:30 AM
12.4 Effects of Aerobic Exercise Training on Renin-angiotensin System Components in Hypertensive Women. Aline Jarrete, Campinas State Univ., Brazil. (4.9).
11:45 AM
12.5 Gender and Circulating Vascular MicroRNAs in Middle-Aged Adults. Jamie Hijmans, Univ. of Colorado, Boulder. (4.10).
12:00 Noon
12:15 PM
12.7 Effects of Menopause and Acute Exercise on Brachial Artery Flow Mediated Dilation and Plasma Endothelial Microparticles. Corinna Serviente, Univ. of Massachusetts, Amherst. (12.7).

Poster Session II
13.0 Respiratory
Thurs., 1:30—2:30 PM, Rhode/Severn Room.
Poster Board
1
2
3
13.3 Estradiol Prevents Cardio-respiratory Dysfunctions Induced by Chronic Intermittent Hypoxia in Female Rats. S. Laouafa, F. Marcouiller, D. Roussel, A. Bairam, and V. Joseph, Univ. of Laval, Quebec, Canada, and Univ. of Claude Bernard Lyon, Villeurbanne, France.
4
5
13.5 Masculine and cardiorespiratory Adaptations to Treadmill Training with Aging are Blunted in Female Compared to Male Mice. K. Huey, T. Drake, G. Dillon, and C. Lee. Drake Univ., Des Moines, IA.
6
7
13.7 Contribution of the Nuclear Progesterone Receptor (nPR) to Breathing Stability and Hypercapnic Ventilatory Response in Adult Male Mice. S. Laouafa, F. Marcouiller, and V. Joseph, Univ. of Laval, Quebec, Canada.

Poster Session II
14.0 Neurocontrol
Thurs., 1:30—2:30 PM, Rhode/Severn Room.
Poster Board
8
14.1 The Important Role of Nitric Oxide Synthase in Controlling Mitochondrial Respiration of Large Cerebral Arteries in Female and Male Rats. I. Rutkai, S. Dutta, P. Kataksam, and D. Busija, Tulane Univ.
<table>
<thead>
<tr>
<th>Poster Board</th>
<th>Poster Board</th>
</tr>
</thead>
</table>

DEVELOPMENTAL PROGRAMMING

<table>
<thead>
<tr>
<th>Poster Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3 Sex Differences in High Fat Diet-induced Adipocyte Morphology and Fat Distribution Due to Early Life Stress. M. Murphy, L. Schmuckie, D. Powell, and A. Loria. Univ. of Kentucky, Lexington.</td>
</tr>
<tr>
<td>16.5 Reduced Sleep Time During Pregnancy-Effects on Renal Morphology and Function of Female Offspring. G. N. Nemes, R. Argeri, and S. Tufik. Univ. of São Paulo, Brazil.</td>
</tr>
</tbody>
</table>

DAILY SCHEDULE

<table>
<thead>
<tr>
<th>Poster Board</th>
</tr>
</thead>
</table>

PREGNANCY

<table>
<thead>
<tr>
<th>Poster Board</th>
</tr>
</thead>
</table>

35 16.7 Sex Difference in Sensitization of Angiotensin (ANG) II-elicited Hypertension in Offspring of Hypertensive Pregnant Rats. B. Xue, F. Gao, T. Belz, R. thwart, and A. Johnson. Univ. of Iowa, Iowa City, IA.

36 16.8 Sex Differences in Cardiovascular Responses to Stress in Adult Rats Prenatally Exposed to Dexamethasone. T. Hale, D. Carbone, L. Madhavpoldi, M. Thompson, and R. Handa. Univ. of Arizona, Phoenix.

Plenary Lecture

18.0 PLENARY LECTURE
Thursday, 2:30—3:00 PM, Wye Room.

Chair: Kathryn Sandberg, Georgetown Univ.

2:30 PM 18.1 Studying Both Sexes: A New Frontier for Discovery. Janine Clayton, NIH, Office of Res. in Women’s Hlth., Bethesda, MD.

Symposia VII

19.0 OBESITY, METABOLIC SYNDROME, GENDER AND SEX
Thursday, 3:00—5:00 PM, Wye Room.

Chair: James R. Sowers, Univ. of Missouri.

3:40 PM 19.3 The Role of Estrogens and Androgen in Control of Glucose Homeostasis. Franck Mauvais-Jarvis. Tulane Univ.

4:00 PM 19.4 Sex Dimorphism In Plasma Soluble Prorenin Receptor (sPRR) Levels In Obese Patients Is Associated With Type 2 Diabetes Mellitus in Women But Not in Men. Carla B. Rosales. Tulane Univ. (6.18).

Thank You to the Generous Sponsors of this Conference

American Heart Assn. Council

Council on Hypertension
FRIDAY, NOVEMBER 20, 2015

Symposia VIII

20.0 PREGNANCY AND PRE-ECLAMPSIA

Fri., 8:00—10:00 AM, Wye Room.

Chair: Christine Marie, NIH, NHLBI.

- **8:00 AM 20.1** Mechanisms of Maternal Uterine Vascular remodeling During Gestation. *George Osol, Univ. of Vermont Coll. Med., Burlington.*

- **8:20 AM 20.2** Spontaneous Superimposed Preeclampsia in Dahl Salt Sensitive Rats. *Jennifer Sasser, Univ. of Mississippi Med. Ctr, Jackson.*

- **8:40 AM 20.3** Vasopressin: A New Beginning for the End of Preeclampsia? *Mark Santillan, Univ. of Iowa.*

- **9:00 AM 20.4** Up-regulation of VEGFR2 Improves Uterine Artery Myogenic Response and Maternal Hypertension Altered by Uterine Perfusion Pressure Reductions. *Brittany Balser, Univ. of Akron. (15.10).*

- **9:15 AM 20.5** Effects of High-sucrose Diet on Blood Pressure Regulation During Pregnancy in Rats. *Frank Spradley, Univ. of Mississippi Med. Ctr, Jackson. (15.11).*

- **9:45 AM 20.7** Impaired Flow-Mediated Dilation Before, During and After Preeclampsia: A Systematic Review and Meta-analysis. *Tracey Weissgerber, Mayo Clinic, Rochester, MN. (15.13).*

Symposia IX

21.0 POPULATION STUDIES-GENDER AND SEX IN CVD, RENAL DISEASE, AND METABOLIC SYNDROME

Fri., 10:30—11:30 AM, Wye Room.

Chair: Rita Tostes, Univ. of São Paulo, Brazil.

- **10:50 AM 21.2** Gender Differences in Hypertension and Health Behaviors. *Marie Krousel-Wood, Tulane Univ.*

- **11:10 AM 21.3** Tobacco Smoking Exposure from Childhood to Adulthood and Adult Subclinical Vascular Disease. *Shengxu Li, Tulane Univ.*

Closing Remarks

22.0 CLOSING REMARKS

Fri., 11:35—11:45 AM, Wye Room.

Chairs: Jane F. Reckelhoff, Univ. of Mississippi Med. Ctr; S. Ananth Karumanchi, Harvard Med. Sch.

NOTES

Join us at the Closing Banquet and Award Presentation

Thursday, November 19, 2015

7:00—9:30 PM

Get your complimentary ticket at the registration desk
2015 APS Conference
Cardiovascular, Renal and Metabolic Diseases: Physiology and Gender

Abstracts of Invited and Contributed Presentations

2.0 Immune System and Regenerative Medicine Impact of Gender and Sex.................................13
3.0 Non-reproductive Actions of Sex Hormones and Receptors-A..13
4.0 Cardiovascular Disease..14
5.0 Cardiac..16
6.0 Metabolism and Diabetes...19
7.0 Renal ...24
8.0 Neuro Control of Cardiovascular, Renal and Metabolic Disease: Impact of Gender and Sex….27
11.0 Developmental Programming of Cardiovascular, Renal and Metabolic Diseases:
 Roles of Gender and Sex..27
12.0 Non-reproductive Effects of Sex Hormones and Receptors-B..28
13.0 Respiration...29
14.0 Neurocontrol...31
15.0 Pregnancy...33
16.0 Developmental Programming...36
17.0 Aging and Menopause..38
18.0 Plenary Lecture..42
19.0 Obesity, Metabolic Syndrome, Gender and Sex..42
20.0 Pregnancy and Preeclampsia..42
21.0 Population Studies-Gender and Sex in CVD, Renal Disease, and Metabolic Syndrome.......43

Author Index..44
2.0 IMMUNE SYSTEM AND REGENERATIVE MEDICINE – IMPACT OF GENDER AND SEX

2.1 ESTROGEN RECEPTOR ALPHA ENHANCES LOSS OF TOLERANCE TO NUCLEAR ANTIGENS AND IMMUNE CELL ACTIVATION INDUCED BY THE SLE1 LUPUS SUSCEPTIBILITY ALLELE AND IS RESPONSIBLE FOR THE SEX BIASES ASSOCIATED WITH SLE1

Karen Gould1, and Shayla Yoachim1

1Genetics, Cell Biology & Anatomy, Univ. of Nebraska Med. Ctr., 965805 Nebraska Med. Ctr., Omaha, NE, 68198-5805.

Lupus is an autoimmune disease characterized by the development of anti-nuclear autoantibodies and immune complex mediated nephritis. ~90% of lupus patients are women, and this sex bias is thought to be driven largely by estrogens. Previously, we showed that estrogens promote lupus via estrogen receptor (ERα). The SLE1 lupus susceptibility allele promotes the development of anti-nuclear autoantibodies and immune cell activation. The phenotype associated with SLE1 is more robust in females than males, suggesting that estrogens, acting via ERα, may enhance the effect of SLE1. To test this hypothesis, we examined the impact of a targeted disruption of ERα on the development of anti-nuclear autoantibodies and immune cell activation B6.Sle1 congenic mice. ERα deficiency attenuated the development of autoantibodies in B6.Sle1 congenic females but not males. ERα deficiency decreased Sle1-induced immune cell activation in females, and to a lesser extent, in males. Altogether, these data demonstrate that the sex bias in Sle1-induced loss of tolerance to nuclear antigens and immune cell activation is ERα-dependent. Support: NIH R01 AI075167 References: Yoachim S,D.,Nuxoll J,S.,Bynoté K.K.,Gould K.A., Estrogen receptor alpha signaling promotes Sle1-induced loss of tolerance and immune cell activation and is responsible for sex bias in B6.Sle1 congenic mice. Clin Immunol. 2015, 158(2):153-66.

2.2 ROLE OF T CELLS IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASE AND HYPERTENSION

Jennifer Sullivan1

1Physiology, Georgia Regents Univ., 1459 Laney Walker Blvd., Augusta, GA, 30912.

Hypertension is now considered a state of low-grade inflammation. While T cells have broadly been implicated in blood pressure control, the most is known regarding the role of Th17 cells and T regulatory cells (Tregs). Th17 cells mediate pro-inflammatory responses through the secretion of the pro-inflammatory cytokine, IL-17 and a role for Th17 cells in hypertension has been indirectly surmised based on studies manipulating IL-17 levels. In contrast, Tregs are crucial in maintaining immunologic self-tolerance and protection from auto-immune disease as well as regulating immune responses to pathogens by impacting effector T cell function. Adoptive transfer studies have conclusively linked Tregs with decreases in blood pressure and improved cardiovascular outcomes. Despite an ever expanding literature base supporting a causal role of T cells to hypertension and related end-organ damage in both the basic sciences and clinically, the majority of this literature has been performed exclusively in males despite the fact that both men and women develop hypertension. Recent studies by our group and others, have highlighted important sex differences in the immune profile and blood pressure responses to T cells. These results highlight the need to better understand the influence of sex on the immune system and underline the potential complexity of immune system regulation of blood pressure and cardiovascular function. More work is needed to define the physiological impact of sex differences in immune system components, and also how each of these components may impact overall cardiovascular health. References: McMaster, W.G., Kiss RB, A., Madhar M.S., Harrison, D.G., Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015 Mar 13;116(6):1022-33; Tipton AJ and Sullivan JC. Sex and gender differences in T cells in hypertension. Clinical Therapeutics, 36(12):1882-1900; 2014.

2.3 ESTROGEN AND ITS EFFECTS ON WOMEN WITH LUPUS ERYTHEMATOSUS

Michael Ryan1

1Physiology & Biophysics, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216-4505.

Systemic lupus erythematosus (SLE) is an autoimmune disorder that predominantly affects women of childbearing age. Women with SLE have a marked increase in the risk for developing hypertension, cardiovascular, and renal disease. Because of the strong bias towards women, estrogens are commonly implicated in the pathogenesis of SLE. Indeed, numerous studies in experimental models of SLE show that removing estrogens, or their receptors, early in life has a profound effect to delay the production of autoantibodies, renal pathology, and mortality. However, the role of estrogens and how they impact SLE disease progression and the associated cardiovascular risk factors like hypertension remain surprisingly unclear in adult women. Recent data from our laboratory suggest that there may be distinct temporal effects of estrogen in an established experimental mouse model of SLE (female NZBWF1 mice). Whereas early life (8 weeks of age) removal of estrogens by ovariectomy causes the expected delay in the onset of autoantibody production and renal injury, removal of estrogens in adulthood (30 weeks of age) exacerbates the hypertension and renal injury associated with SLE without impacting autoantibody production. Further studies are needed in women to better understand the role of estrogens in their disease progression, and experimental animal models may be useful to understand the complex role that estrogens have in this disease.
3.3 GPER AND VASCULAR FUNCTION

Sarah Lindley1,2

1Pharmacology, Tulane Univ., 1430 Tulane Ave., Mailbox 3068, New Orleans, LA, 70112.

While estrogen receptors ERα and ERβ are known to induce transcriptional effects, a new membrane-bound, G protein-coupled estrogen receptor (GPER) was recently identified as a possible mediator of estrogen’s nongenomic effects. A growing body of evidence from our lab and others shows that GPER elicits many of the beneficial actions of estrogen in the cardiovascular system. Using the mTnE2 congenic model of angiotensin II-induced hypertension, we showed that activation of GPER alone emulates the protective effects of estrogen on blood pressure via regulation of the vascular renin-angiotensin system and vascular tone. Further studies to determine the signaling mechanisms for GPER in the vasculature found that this receptor induces nitric oxide release from endothelial cells and activates the cyclic AMP pathway in smooth muscle cells. In salt-sensitive hypertension, GPER counteracts proteinuria and oxidative stress in the kidney and opposes vascular remodeling in large conduit vessels. GPER expression and function is reduced in males and aging females, which has important clinical implications. We hope that research on the cardiovascular effects of estrogen and the receptors and mechanisms involved will lead to improvements in hormone therapy for postmenopausal women. (NIH 103471). Lindley et al 2009. Endocrinology. 150:3753-58. Lindley et al 2011. Hypertension. 58:665-671. Lindley et al 2011. J Cardiovasc Pharmacol. 57:598-603. Lindley et al 2013. Am J Physiol Endocrinol Metab. 305(1):E113-8. Lindley et al 2014. Steroids. 81:99-102.

4.0 CARDIOVASCULAR DISEASE

4.1 MATRIX METALLOPROTEINASE-9 IS CRITICAL FOR 2-METHOXYESTRADIOL MEDIATED ANGIOTENSIN TYPE 1 RECEPTOR DOWN-REGULATION

Bernd Ouroli,1 Yoon Jung,2 and Thomas Thekkumkur1

1Dept. of Biomedical Sci., Texas Tech. Univ. Hlth. Sci.Ctr. Sch. of Pharmacy, 1300 S. Coulter, Amarillo, TX, 79106.

Recently, studies have demonstrated that one of the final end products of estrogen metabolism 2-methoxyestradiol (2ME2) has the therapeutic potential in a number of cardiovascular disorders, including hypertension. However, the exact mechanism(s) remains unknown. Inhibiting angiotensin type 1 receptor (AT1R) has been shown to be critical for controlling hypertension and associated disorders. Ongoing studies in our laboratory show that epithelial and smooth muscle cells exposed to 2ME2 down-regulate AT1R protein and mRNA in a concentration and time dependent manner. In this study, continuously passaged epithelial cells expressing native AT1R were exposed to 2ME2, and angiotensin II radio ligand binding and signaling pathways were assessed. In the presence of 2ME2, cells exhibited significant phosphorylation and nuclear translocation of ERK1/2 and down-regulation of AT1R. Using QM6001, a broad-spectrum matrix metalloproteinase (MMPs) inhibitor, and AG1478, an epidermal growth factor receptor (EGFR) selective inhibitor, we demonstrated that 2ME2 mediated phosphorylation of ERK1/2 is dependent on the activation of MMPs and transactivation of EGFR receptor. Furthermore, murinastat, a matrix metalloproteinase-9 (MMP9) specific inhibitor attenuated 2ME2 induced phosphorylation of EGFR and ERK1/2 and reversed AT1R down-regulation. Under similar conditions stimulation of G-protein coupled estrogen receptor -1 (GPER-1) with the selective agonist G1 elicited similar signaling pathway and down-regulated the AT1R expression. Moreover, immunoprecipitation studies show that 2ME2 G1 phosphohydroxy EGFR at tyrosine 1173, which is a crucial residue on EGFR to interact with Src homology 2 domain-containing tyrosine phosphate 1 (SHP1), which controls the level of EGFR phosphorylation. Collectively, our study demonstrates for the first time that 2ME2 mediated activation of MMP9 results in EGFR phosphorylation at tyrosine 1173 leading to the ERK1/2 activation; a signaling pathway essential for AT1R down-regulation. Furthermore, our study results suggest a potential mechanism for the observed effects of estrogen against cardiovascular disorders in premenopausal women.

4.2 UNDERREPRESENTATION OF SEX IN REPORTING TRADITIONAL AND EMERGING BIOMARKERS FOR PRIMARY PREVENTION OF CARDIOVASCULAR DISEASE: A SYSTEMATIC REVIEW

Aisha Gobir,1 Renate Schnabel2,3, Maria Hughen4, Tanja Zeller2,3, Stefan Blankenberg2,3, Gerhard Pasternack3, and Hester den Ruijter1

Introduction: The Y chromosome has long been considered genomic wasteland with few genes only implicated in sex determination. However, recent studies found Y-chromosomal dosage-sensitive whole-genome regulators, an immunoregulatory role for Y, and a relation between loss of Y (LOY) and a higher risk of cancer and mortality. Given the involvement of immune cells in atherosclerosis, we hypothesized that LOY is associated with specific cardiovascular disease (CVD) phenotypes in men undergoing carotid endarterectomy (CEA). Materials and Methods: LOY was quantified in blood from raw intensity genotyping data in a cohort of 368 men within the Athero-Express biobank study. Atherosclerotic plaques were dissected, and the culprit lesions were used for histological characterisation and the measurement of various inflammatory proteins. We tested LOY for association with measures of cardiovascular disease severity and inflammatory atherosclerotic plaque phenotypes (macrophage content, IL6, IL10, IL12, TNFα, IFNγ and TGFβ) levels. In addition we assessed the association of LOY with secondary major cardiovascular events during 3-year follow-up. The study was conducted in accordance with the declaration of Helsinki. Results: Out of 368 CEA patients, 61 exhibited LOY. Loss of Y in blood was negatively associated with age (p=0.031/10yr, r2=0.08, p=2.2×10-8). Loss of Y was not associated with history of coronary artery disease, stroke, contralateral carotid stenosis or peripheral arterial disease of the lower limbs. Likewise we found no association of LOY with macrophage content or inflammatory cytokines in the plaque. Interestingly LOY was independently associated with secondary major cardiovascular events during three-year follow-up (p=0.032) in a Cox regression model corrected for confounders. Conclusion: LOY in circulating blood cells is independently associated with secondary major cardiovascular events in a severely atherosclerotic population.
Our data support that LOY is associated with an increased risk for the occurrence of secondary cardiovascular events. However, we did not observe an association with inflammatory plaque characteristics that could explain this result, suggesting that LOY affects secondary outcome by alternate mechanisms. Funding: Saskia Haëmert is supported by the FP7 EU project CVgenes@target (HEALTH-F2-2013-601456).

4.4 CIRCULATING GDF-15 LEVELS ARE EXPLICITLY VALUABLE FOR THE PREDICTION FOR FUTURE CARDIOVASCULAR COMPLICATIONS IN WOMEN

Aisha Gohar1, Joyce Vrijenhock1, Gerard Pasterkamp1, Hester den Ruijter1, and Saskia de Jager1

Background: Cardiovascular disease (CVD) remains a major contributor to global morbidity and mortality. The underlying mechanisms for CVD and clinical presentations of diseases have been found to differ between men and women. Growth differentiation factor (GDF) 15 is a member of the transforming growth factor (TGF-β) family, which operates in acute phase responses. Elevated GDF-15 serum levels are an established risk factor for several cardiovascular diseases ranging from early chest pain to acute coronary syndromes and heart failure. In this study we aimed to evaluate the predictive value of GDF-15 as a biomarker for secondary cardiovascular events in men and women undergoing cardial endarterectomy. Methods: Circulating GDF-15 levels were determined by ELISA in a subset of 1064 patients from the Athero Express Biobank. Multiple linear regression models were used to investigate the associations between GDF-15 and clinical risk factors. Multivariable cox regression models were performed to analyze secondary events. Results: The Median GDF-15 level was 104206 pg/L (51803, 182296) for the entire cohort, which is higher than previously observed levels in CVD. We did not discern a difference in baseline GDF-15 levels between men and women (Men: 106375 [51182, 182596 vs. Women: 99042 [52094, 172273], p value for difference 0.241). High levels of GDF-15 were associated with increasing age, reducing renal function, and a history of diabetes. However in women, only increasing age was found to be associated with GDF-15 levels. Interestingly, we show that a high level of circulating GDF-15 is a strong predictor for secondary cardiovascular events specifically in women (composite events: Quantile 4: HR 2.69 95% CI 1.25-5.81 p=0.01 in women vs. HR 0.96 95% CI 0.66-1.40 p=0.02 in men) and more precisely for peripheral events (Quantile 4: HR 3.41 95% CI 1.11-10.47, p=0.03 in women vs. HR 0.68 95% CI 0.40-1.17 p<0.16 in men). Conclusions: High circulating GDF-15 is predictive of secondary outcome in women but not men, suggesting a potential role for GDF-15 as a biomarker for secondary prevention in women. In addition, this again illustrates the differences in atherosclerotic disease mechanisms in women, where the role of GDF-15 clearly deserves further interest. Funding: AG is supported by EUTRAIN. This project has received funding under the Marie Curie grant agreement No 289903.

4.5 A STUDY OF THE POTENTIAL RISK FACTORS OF CARDIOVASCULAR DISEASES IN YOUNG SAUDI FEMALES

Lubna Al-Assoum1
1Physiology, Univ. of Dammam, King Saud, Dammam, Saudi Arabia.

Background: Multiple risk factors have been blamed to precipitate wide range of cardiovascular diseases such as hypertension, ischemic heart diseases, stroke, and heart failure. These risk factors might differ between different selected age, sex and ethnic groups. Aim and objectives: In the current study, we aim to find out indicators of cardiovascular risk in young Saudi females by studying the correlation of three main risk factors i.e. body adiposity, physical fitness, and a history of diabetes. However in women, only increasing age was found to be associated with GDF-15 levels. Interestingly, we show that a high level of circulating GDF-15 is a strong predictor for secondary cardiovascular events specifically in women (composite events: Quantile 4: HR 2.69 95% CI 1.25-5.81 p=0.01 in women vs. HR 0.96 95% CI 0.66-1.40 p=0.02 in men) and more precisely for peripheral events (Quantile 4: HR 3.41 95% CI 1.11-10.47, p=0.03 in women vs. HR 0.68 95% CI 0.40-1.17 p<0.16 in men). Conclusions: High circulating GDF-15 is predictive of secondary outcome in women but not men, suggesting a potential role for GDF-15 as a biomarker for secondary prevention in women. In addition, this again illustrates the differences in atherosclerotic disease mechanisms in women, where the role of GDF-15 clearly deserves further interest. Funding: AG is supported by EUTRAIN. This project has received funding under the Marie Curie grant agreement No 289903.

4.6 ASSESSMENT OF GENDER- AND AGE-DEPENDENT PATTERNS OF CARDIOVASCULAR REMODELING IN SPONTANEOUSLY HYPERTENSIVE RATS (SHR)

S. Al-Gburi1, I. Kopaliani1, B. Zsanchel1, R. Galli1, M. Kasper3, and A. Deussen1

Cardiovascular diseases are the leading cause of death worldwide. Whereas men are more prone to develop hypertensive disorders, the death rate due to cardiovascular events is much higher among women. Despite this disparity, experimental and clinical long-term studies are still lacking to better understand the contribution of gender to age-dependent progression of hypertensive cardiovascular diseases. Here, we investigated the impact of gender in progression of cardiovascular remodeling in female and male SHR. 5-, 14-, 29- and 36-week-old female and male SHR, age and gender matched with Wistar Kyoto rats (WKY) were studied. Animals were handled with permission (No.: 24-916824-1/2012-16) of institutional committee and the local authorities. Systolic blood pressure (SBP) was measured weekly with the tail-cuff method. Vessel function of aortic rings was quantified using Mulvany Myograph. Structural changes of aorta and heart were assessed by histological staining and CARS microscopy. Compared to WKY, all SHR showed significantly (P<0.01) higher SBP, except age of 5 weeks. Interestingly, at 14 weeks, SBP of female SHR was ~40 mmHg lower than that of male SHR. At this age, isolated aorta of female SHR showed significantly (P<0.01) lower vasoconstrictive response to norepinephrine stimulation compared to male SHR. While 5- and 14-week-old SHR showed normal endothelial function, this was deteriorated in male SHR at 29 weeks. In female SHR endothelial function was still preserved until 36 weeks. At 36 weeks SMC relaxation was strongly impaired. This was associated with distinct alterations in vessel structure. A massive degradation of elastin and increased degree of fibrosis was observed particularly in male SHR and to a lesser degree in female SHR. Advanced functional and structural changes in aorta were accompanied by concentric hypertrophy of the heart, starting at 29 weeks in male and at 36 weeks in female SHR. Cardiac fibrosis was much stronger in male than in female SHR at the age of 36 weeks. An age-dependent upregulation of ACE2 and AT1 receptor expression was found in female as compared to male SHR. This study shows that the SHR model is a valuable tool to address gender-specific age-dependent changes of the cardiovascular system. As gender-related differences are overt, the model may be well suited to improve our understanding of causal mechanisms. This project was financed by the Else Kröner-Fresenius Foundation.

4.7 INDICES OF CARDIOVASCULAR FUNCTION DERIVED FROM PERIPHERAL PULSE WAVE ANALYSIS USING RADIAL APPLANATION TONOMETRY IN HIV POSITIVE PATIENTS FROM MTHATHA DISTRICT OF SOUTH AFRICA

Kofo Awoetedu1, Raj Ensmans2, Abolaade Awotedu3, and Ambrose Nnarrugw1
1Physiology, Walter Sisulu Univ., Fac. of Hlth. Sci., Nelson Mandela Dr., Mthatha, 5100, South Africa, 2Cardiac Pathology, Univ. of Stellenbosch, Fac. of Hlth. Sci., Cape Town, 5100, South Africa, 3Internal Med., Walter Sisulu Univ., Nelson Mandela Dr., Mthatha, 5100, South Africa.

Background: The objective of the study was to see if there is increased arterial stiffness or cardiac dysfunction in HIV patients by using applanation tonometry. Methods: A cross sectional study. 169 participants took part in the study between December 2012 and June 2013. There were 63 HIV positive participants, 52 HIV negative participants, and 54 HIV treatment naive participants. Augmentation index (AIx (75), Kg/m², mean VO2max= 33.7±11.0 ml/kg/min, mean plasma 25-OH-vitamin D= 15.10±0.73 ng/ml. Multivariate linear regression model revealed significant positive linear relationship between body weight and resting diastolic (y1), and resting systolic blood pressure(y2) with p and R2 values (0.041, 0.006) (0.121, 0.107) respectively, and another, linear equation y3=0.244y1+0.706y2+127.1 respectively. Negative linear regression was demonstrated between VO2max and maximum diastolic blood pressure (y1), resting pulse(y2) and maximum pulse rate(y3) with p and R2 values (0.017, 0.018, 0.001) (0.153, 0.113,0.185) and linear equations y1=0.237x+79.3, y2=0.398x+130.128, y3=0.805x+214.94. Vitamin D level showed no significant correlation with any of the haemodynamic parameters. Conclusion: The present study demonstrated that body adiposity and reduced physical fitness appeared to be the most important risk factors toward developing future cardiovascular abnormalities in young Saudi females. Body weight and reduced physical fitness can directly and independently predict the increment in arterial blood pressure and pulse rate in this studied group.
Ejection duration index (ED %) and subendocardial variability ratio (SEVR) and other parameters of interest were measured using arterial wave reflection in these participants. Results: SEVR was highest in the HIV negative participants and lowest in HAART naïve HIV participants (p<0.001). In both groups, the HIV positive participants had significant arterial stiffness compared to HIV negative participants (p=0.024). The HIV positive participants also had higher ejection duration index (ED %) with a higher number being observed in those that were not on treatment (p<0.001). SEVR had negative correlation with HR using Pearson’s correlation and Stepwise Linear regression p<0.001. Conclusion: HIV patients are prone to having systolic dysfuction which may lead to myocardial ischemia. Keywords: HIV, subendocardial variability ratio, ejection duration index, arterial stiffness, cardiac function.

4.8 FUNCTIONAL AND STRUCTURAL CHANGES IN INTERNAL PUDENDAL ARTERIES UNDERLYING ERECTILE DYSFUNCTION INDUCED BY ANDROGEN DEPRIVATION

Ricardo Lopes1, Karla Neco1, Myrcedes Barbosa1, Vania Oliveira1, Silvia Ruizinska1, Jose Antonio1, Amanda Barbosa1, Fernando Carneiro1, and Rita Tostes1

Pharmacology, Univ. of Sao Paulo, Av. Bandeirantes 3900, Med. Sch. of Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; Physiology, Univ. of Sao Paulo, Av. Bandeirantes 3900, Med. Sch. of Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil; Pathology & Legal Med., Univ. of Sao Paulo, Av. Bandeirantes 3900, Med. Sch. of Ribeirao Preto, Ribeirao Preto, 14049-900, Brazil.

Androgen deficiency is strongly associated with erectile dysfunction (ED). Inadequate penile arterial blood flow is one of the major causes of ED. The blood flow to the corpus cavernosum is mainly derived from the internal pudendal arteries (IPAs); however, in spite of the lack of studies of the adverse effects of androgen deprivation on IPAs function, we hypothesized that castration impairs IPAs reactivity and structure, contributing to ED. Wistar male rats, 8 weeks-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure (ICP). We have observed no study of the effects of androgen deprivation on IPAs function. However, we have demonstrated that castration impairs IPAs reactivity and structure, contributing to ED. Wistar male rats, 8 weeks-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure (ICP). We have observed no study of the effects of androgen deprivation on IPAs function. However, we have demonstrated that castration impairs IPAs reactivity and structure, contributing to ED. Wistar male rats, 8 weeks-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure (ICP). We have observed no study of the effects of androgen deprivation on IPAs function. However, we have demonstrated that castration impairs IPAs reactivity and structure, contributing to ED. Wistar male rats, 8 weeks-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure (ICP). We have observed no study of the effects of androgen deprivation on IPAs function. However, we have demonstrated that castration impairs IPAs reactivity and structure, contributing to ED.
Ca²⁺ transients (ΔCa).

No data is available about the effect of cGMP in septic female (F) hearts. We studied M and F C57Bl/6j mice (WT), as well as mice deficient in sGC activity (sGC−/−). Lipopolysaccharide (LPS) administration (ip) induced an inflammatory shock syndrome and cardiomyopathy. Consistent with previous data, LPS—induced mortality in male mice was 60% (n = 11) vs. female WT mice (100%, n = 4) mice. We measured sarcomere shortening (SS) and ΔCa in isolated, externally paced cardiomyocytes (5 Hz), at 37°C, 14 h after challenge with 25 μg/g LPS. WT M mice had decreased SS and ΔCa at 60 ± 7 and 78 ± 4 ms of baseline (6h), respectively. For female WT, 60 ± 7 and 78 ± 4 ms of baseline (6h), respectively (n > 20/4), but not in ΔCa, suggesting a myofilament dysfunction. SS decrease was less in sGC−/− F mice (61 ± 10%, n = 20/4) than in wild type F. In conclusion, sGC-released cGMP plays opposite roles in the pathophysiology of LPS-induced cardiomyopathy in M and F mice. In M, cGMP is protective, and mitigates ΔCa decrease. In contrast, in F, cGMP contributes to the development of myofilament dysfunction. Different therapeutic approaches may thus be required in septic M and F patients. Funded by K08GM09682 (NHI, to IAH).

5.3 INCREASED PREVALENCE OF ATRIAL FIBRILLATION IN MALE MICE IS ASSOCIATED WITH LOWER Expression of Connexin 43 and 40

Anh-Tuan Tou1,2, Antoine Ducharme2, and Celine Fiset1

1Cir. de Res., Montreal Heart Inst., 5000 Belanger Est, S3000, Montreal, QC, H1T1C8, Canada.
2Department of Pediatrics, McGill University, Montreal, QC, Canada.

The risk of developing atrial fibrillation (AF) is more prevalent in men than women, with a 2.1-fold male predominance. The electrical remodelling of the atria is one of the critical processes involved in the development of AF and is characterized by a decrease in conduction velocity and shortening of the atrial action potential duration. Even though AF is the most common sustained cardiac arrhythmia, the basis of the sex-related difference has not been explored. Therefore, the objective of this study is to identify the sex differences in electrophysiological AF substrates responsible for the increased male susceptibility to AF. Accordingly, we used electrical programmed stimulation (EPS) to compare the inducibility of AF in adult male and female C57Bl/6j mice. Results obtained reveal that, similarly to humans, the probability of inducing AF in males was significantly higher compared to females (Males: 11 mice out of 21 (52%); Females: 6 mice out of 24 (25%)). Since the left atrium is particularly vulnerable to the development of AF we used voltage-clamp technique to compare the ion currents in left atrial myocytes isolated from mice of both sexes. The density of Na⁺ current (INa) in males: 20.3 ± 2.1 pA/pF, n = 11; females: 19.1 ± 2.2 pA/pF, n = 13; and total K⁺ current (IK) in males: 20.5 ± 2.8 pA/pF, n = 13; females: 21.4 ± 1.0 pA/pF, n = 26, p = NS) is similar between both sexes. Also, qPCR data revealed that the mRNA expression level of the underlying Na⁺ and K⁺ ion channels in left atria of male and female mice was comparable. However, relative mRNA levels of connexin 40 and 43 (Cx40 and Cx43) were more pronounced in males than in females (P < 0.05, respectively). However, PFC, DDC and PV became significantly reduced from the 7th day of admission and treatment (P < 0.05, respectively). Therefore, the objective of this study is to identify the sex differences in electrophysiological AF substrates responsible for the increased male susceptibility to AF. In conclusion, our study suggests that atrial ion currents are comparable between males and females; however, our results suggest that there might be an important role for lower connexin expression in male mice. These findings contribute to explain the cellular mechanisms responsible for the higher incidence of AF reported in men. This research was funded by the Canadian Institutes of Health Research.

5.4 INDICES OF CARDIAC SYMPATHETIC ACTIVITY DURING LOWER BODY NEGATIVE PRESSURE IN MEN AND WOMEN THROUGHOUT THE MENSTRUAL CYCLE

Heather Fledge1,2, and Richard Hughson3

1Kinesiology & Hlth. Sci., York Univ., 4700 Keele St., Toronto, ON, M3J 1P3, Canada. 2Kinesiology, Univ. of Waterloo, 200 University Ave., West, Waterloo, ON, N2L 3G1, Canada.

Women experience orthostatic intolerance to a greater degree than men and recent studies have begun to investigate the role of sex and the menstrual cycle on muscle sympathetic nerve activity (MSNA) during orthostatic stress (Stickford et al. 2015; Yang et al. 2012; Fu et al. 2009). However, MSNA does not necessarily equate to cardiac sympathetic activity. Eleven women (5 not taking oral contraceptives) OC, 2 taking cyclic OC, and 4 taking non-cyclic OC) and 11 men were recruited and a standard electrocardiogram was recorded throughout a lower body negative pressure (LBNP) protocol. This protocol consisted of 5 minutes at -10, -20, -30, and -40 mmHg. Women were investigated during the low-hormone phase (LH phase; day 8-11) and high-hormone phase (HH phase; day 18-24) of the menstrual cycle. At baseline and -40 mmHg, heart-rate variability (HRV, time and frequency domains) and T-wave amplitude were determined. T-wave amplitude was investigated as Baumert et al. (2011) suggested that it may provide a tool to assess sympathetic outflow to the heart during orthostatic stress. Indeed, the percent change in T-wave amplitude due to LBNP was found to be significantly correlated with the percent change in low-frequency power (LF) (p = 0.0003) and the percent change in the ratio of low frequency to high frequency power (LF/HF) (p = 0.0005) in these participants. LBNP resulted in: 1) decreased T-wave amplitude in all groups (Men: -18.5 ± 3.3%, HH phase: -17.3 ± 5.6%, LH phase: -15.6 ± 4.1%, p = 0.05, respectively). However, PFC, DDC and PV became significantly lowered from the 4th day of admission while all the parameters became significantly reduced from the 7th day of admission and treatment (P < 0.05, respectively). There were no significant sex variations in all the parameters except haematocrit and whole blood viscosity, which were lower in females than in males (P = 0.05, respectively). Platelet counts remained significantly high throughout the study period. Conclusion: We conclude therefore that hyperfunctioning anaemia coupled with hypo-functional activity and high plasma viscosities could be equally associated risk factors of thrombosis in Nigerians with AMI and their reduction during treatment are positive indicators and as possible factorials in its pathogenesis.

5.5 IN VIVO ELECTROCARDIOGRAMS IN A MURINE MODEL OF CHAGASIC CARDIOMYOPATHY SPECIFY FIRST DEGREE ATRIOVENTRICULAR BLOCK AS A PREDICTOR FOR SEVERE DISEASE

Jonathan Respress1,2, Meagan Barry3,4, Kathryn Jones2, Maria Elena Bottazzi2, Jonathan Respress1,2, Meagan Barry3,4, Kathryn Jones2, Maria Elena Bottazzi2, and Peter Hotez5

Chagas disease (CD) is a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi). The disease afflicts millions
and equivalently reduced mRNA expression levels of ERβ; however, levels of expression were not influenced by sex. AngII significantly induced aromatase in both male and female cardiac fibroblasts. Aromatase was expressed at low levels in non-cardiac tissues, in the present study we investigated the impact of sex steroid receptor expression and at least one enzyme involved in gonadal sex steroid metabolism on sex differences in metabolism and cardiac health and disease.

5.6 ANGIOTENSIN II MODULATES SEX STEROID METABOLIZING ENZYME AND RECEPTOR EXPRESSION IN CARDIAC FIBROBLASTS FROM MALE AND FEMALE RATS

Lakshmi Madhavpeddi1, Rayna Gonzales1, and Taben Hale1

Pathological cardiac remodeling involving fibrosis is a major underlying feature of progressive heart disease leading to heart failure. Gonadal sex steroids have been shown to attenuate angiotensin II (AngII)-induced cardiac fibrosis and fibroblast activation. Given that AngII has been shown to influence androgen and estrogen receptor expression in non-cardiac tissues, in the present study we investigated the impact of AngII on sex steroid receptor and aromatase expression in primary rat cardiac fibroblasts. Cardiac fibroblasts were isolated from adult male and female rats and treated with AngII or vehicle (Veh). Gene expression of aromatase, 5α-reductase, and androgen receptor (AR), and estrogen receptors (ERα, ERβ) were determined by qRT-PCR. Cardiac fibroblasts express ERα, AR, and ERβ, as well as the metabolizing enzymes 5α-reductase and aromatase; however, levels of expression were not influenced by sex. AngII significantly and equivalently reduced mRNA expression levels of ERα, ERβ, and 5α-reductase in both male and female cardiac fibroblasts. Aromatase was expressed at low levels in male and female fibroblasts and was not altered by AngII. In separate studies the impact of testosterone, a potential substrate for local 17β-estradiol production via aromatase, was assessed to indirectly determine if AngII alters local aromatase activity.

5.7 CARDIAC REMODELING IN FEMALE HEARTS BY KVB1 SUBUNIT

Jared Tur1, Kalyan Chapalaparamia2, Tian Padel1, and Srinivas Tippareddy2

Cardiovascular disease remains the leading cause of death for women in the US. The etiology of the disease largely remains unknown in addition symptoms can remain silent for many years. The hallmarks for the disease demonstrate cardiac functional alterations including higher heart rates, longer QTc duration and a greater propensity for arrhythmias. These symptoms can be caused by cardiac remodeling leading to re-polarization defects. Potassium channels play a major role in maintaining the repolarization reserve and the Kvβ1 subunits are uniquely positioned to modulate Kv1 (Kv1+ and Kvβ1) channels. The present study investigates the physiological function and roles of Kvβ1. We utilized a Kvβ1− deficient female mouse line (Kvβ1−/−) and noted abnormal electrocardiographic rhythms indicative of bradycardia, ventricular arrhythmias, and electrical disturbances. This report clearly demonstrates that the Kvβ1 subunit is involved in cardiac growth and electrical remodeling. Funding source: NIH R01HL12071-01A1.

5.8 IMPAIRED DIASTOLIC FUNCTION FOLLOWING ACUTE STARVATION IN MEN BUT NOT PREMENOPAUSAL WOMEN

Michael Nelson1, Lidia Szczepaniak1, Deborah Clega2, Debosio Li3, and C. Noel Bailey Merz1

Acute starvation in men has been well studied. However, the impact of acute starvation on sex differences in metabolism and cardiac health and disease has not been studied. To determine the impact of acute starvation on sex differences in metabolism and cardiac health and disease, we performed an acute (48 hours) starvation intervention in ten healthy volunteers (6 men/4 women, age: 29±4 yrs). Myocardial triglyceride content and left ventricular diastolic function were measured by magnetic resonance spectroscopy and imaging, respectively; at baseline (BL), immediately after the 48 hour fast, and 48-72 hours following re-feeding with the subjects normal diet. As expected, acute starvation caused a significant, but transient, mean elevation in circulating free fatty acids (ABL: 162±11%, P=0.02), ketone bodies (ABL: 238±168%, P=0.001), and myocardial triglyceride content (ABL: 364±139%, P<0.001), returning to baseline upon follow-up. Remarkably, left ventricular relaxation rate was reduced in each of the men following the 48 hour fast (ABL: -19±3%, P<0.05), but remained unchanged in the female subjects (ABL: 4±2%, P=0.1916). Sex specific analysis also revealed significantly greater elevations in ketone bodies in females than males (ABL: 425±61% vs. 187±59%, respectively), despite a similar increase in circulating free fatty acids (ABL: 147±14% vs. 213±29%, female vs. male, respectively). Because ketone bodies are known to be anti-inflammatory, we speculated that premenopausal women may be protected against metabolic fatty acid-induced inflammation through this specific pathway. Further work in a larger sample size including post-menopausal women is warranted to further understand the role of estrogen on sex differences in metabolism and cardiac health and disease.

5.9 ATTENUATION OF CARDIAC AGING AND LEPTIN-DEPENDENT CARDIOPROTECTION IN LONG-LIVED AMUPA MICE

Edith Hochhauser1, Esther Levy2, Reut Garved3, Ilana Fratzy4, Gabriel Greenberg5, Mavian Waldman6, Einat Birk5, Asher Shainberg5, Ruth Miskin7, and Ran Kompanetz1

Leptin is a hormone known to reduce the rate of aging. The AMUPA mouse line demonstrates enhanced heart, systolic dysfunction, and electrophysiological defects. This report clearly demonstrates that the Kvβ1 subunit is involved in cardiac growth and electrical remodeling. Funding source: NIH R01HL12071-01A1.
abrogated the αMUPA benefits. The antibodies also reduced phosphorylation of the leptin signaling components STAT3 and AKT specifically in the αMUPA myocardium. αMUPA mice did not show elevation in adiponectin previously implicated in CR-induced cardioprotection. These results demonstrate a life-long increased ischemic tolerance in αMUPA mice, indicating the attenuation of cardiac aging. αMUPA cardioprotection is mediated through endogenous leptin, suggesting a protective pathway distinct from that elicited under CR. This study was funded by the Israel Science Foundation.

5.10 THE CHARACTERIZATION OF AUXOTONIC TWITCH OF RIGHT VENTRICULAR CARDIOMYOCYTES FROM NON-FAILING AND FAILING HEARTS OF IMPUBLERAL MALE AND FEMALE RATS

Oleg Lookin¹, and Yuri Protosenko²

¹Univ Branch of Russian Academy of Sci, Inst. of Immunology & Physiology, Bldg. 106, Pervomayskaya Str., Yekaterinburg, 620049, Russian Fed.

The myocardial contractility in heart failure is impaired in adult males but preserved in adult females. This is associated with the protective effect of sex hormones. In impuberal, the protection is limited. We characterized auxotonic twitch of isolated right ventricular (RV) cardiomyocytes from young male/female healthy and RV failing rats. The experiments have been conducted on 2-month Wistar rats in conformance with the Declaration of Helsinki and the APS “Guiding Principles in the care and use of Animals”. RV cardiomyocytes were obtained from non-failing males/females (NF-m, NF-f) and monocrotaline-treated males/females (MC-m, MC-f); n=4 in each group. Auxotonic twitches (>20 cells/group) were measured at 25°C and 1 Hz pacing rate under different preload using carbon fiber technique. Data presented as mean±SE; difference is significant at P<0.05. At low preload (<110% of slack length, Ls), end-systolic tension was two-fold larger in males vs. females in NF or MCT and was significantly larger in MCT-m/MCT-f vs. NF-m/NF-f (by 42±6/14±7.0±1%, respectively). The normalized rate of tension development did not differ in NF-m vs. NF-f (12.2±0.3 vs. 12.3±0.2 1/s) but was significantly lower in MCT-m/MCT-f (12.8±0.1 vs. 13.7±0.2 1/s). The time-to-peak tension and twitch duration were sex-independent in NF or MCT but both parameters were significantly lower in MCT-m vs. NF-m (by 7.7±0.7% and 7.5±0.3%, respectively) and in MCT-f vs. NF-f (by 17.4±1.0% and 16.5±0.7%). These proportions in general remained under increased preloads (115-130% Ls). End-systolic tension was higher in MCT-fs NF-f (by 75.1±2.8%, significant) and in MCT-m vs. NF-f (by 17.6±6.3%). The normalized rate of tension development was significantly lower in NF-m vs. NF-f (10.6±0.3 vs. 11.2±0.2 1/s) and in MCT-m vs. MCT-f (11.8±0.2 vs. 12.8±0.1 1/s); this parameter was substantially higher in MCT vs. same-sex NF. Time-to-peak tension and twitch duration were significantly shortened in MCT vs. same-sex NF. In conclusion, the characteristics of auxotonic twitch of RV cardiomyocytes of impuberal male and female rats with monocrotaline-induced RV heart failure display similar changes from those observed in the same-sex healthy animals. The gender-specific differences were found both at low and physiological preloads. In contrast to adult animals, the protective effect of sex hormones in female myocardium is not in action yet in young rats. The study is supported by RFBR #13-04-00367.

5.11 LOWER LEVELS OF INTERLEUKIN-6 IN FEMALE MICE AT DAYS 1 AND 3 POST-MYOCARDIAL INFARCTION ATTENUATE NEUTROPHIL INFILTRATION, RAPTURE, AND LEFT VENTRICULAR DILATION

Kristine DeLeon-Pennell¹,², Rugmani P. Iyer¹,², Yonggang Ma¹,², Andriy Yabluchanskyi³, Ganesh V. Halade¹, and Merry L. Lindsey⁴

¹Physiology & Biophysics, Univ. of Mississippi Med. Ctr., 2500 N. State St, Jackson, MS, 34921, ²NIHHLIB, San Antonio Cardiovascular Proteomics Ctr., 5200 N. State St, Jackson, MS, 34921, ³Div. of Cardiovascular Dis., Dept. of Med., The Univ. of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35223, ⁴Res. Service, G.V. (Sonny) Montgomery Vets. Affairs Med. Ctr., 1500 E. Woodrow Wilson Ave, Jackson, MS, 39216.

Survival after myocardial infarction (MI) is improved in female compared to male mice of the same age, yet the mechanisms to explain this phenotype remain undefined. We hypothesized that female mice have lower acute systemic pro-inflammatory cytokine production leading to improved survival and cardiac function post-MI. We used C57BL/6 male and female mice (3-7 months old; n=95) for this study. Females had better day (D) 7 survival (73%; 26 out of 34) compared to males (40%; 26 out of 65; p<0.05). In addition, rupture rate (rupture/total deaths) was reduced in females at D7 compared to males (p<0.05). Interestingly, despite higher IL-6 at D7 post-MI in female mice, EDD was decreased in females (5.41±0.10 mm) compared to males (5.94±0.24 mm; p=0.05; n=10-12/sec/day) highlighting the importance of early post-MI events. Since IL-6 is known to regulate neutrophil infiltration early post-MI, we evaluated neutrophil numbers and found females had a 2-fold reduction compared to males at D1 and 3 post-MI (p<0.05 for both days; n=6/sex/day). In conclusion, females had reduced circulating IL-6 at D1 and D3 post-MI, which led to decreased neutrophil infiltration and attenuated cardiac rupture and LV dilation.

6.0 METABOLISM AND DIABETES

6.1 AUGMENTATION OF URINARY ANGIOTENSINOGEN LEVELS IN YOUNG MEN AND WOMEN WITH TYPE-1 DIABETES MELLITUS

L. Gabriel Navar¹, Akemi Katsunada², Viviana Fonseca², Minolfia C. Prieo³, Stuart Chalmers², and Hirokazu Kebir⁴

We recently reported that augmented urinary angiotensinogen (uAGT) reflects early activation of intrarenal renin-angiotensin system (RAS) in subjects with type-1 diabetes mellitus (T1DM). The uAGT levels increase prior to the development of albuminuria and are correlated with serum hemoglobin A1c (HbA1c) levels and urinary 8-isoprostane excretion rates. The present study explored the separate uAGT responses in young diabetic men and women and their relationships with HbA1c and urinary 8-isoprostane excretion rates in blood and urine samples from control subjects (21 men, 19 women) and short duration (6.1±7.4 yr for men and 6.4±4.4 yr for women) T1DM subjects (49 men, 37 women) with similar body weights, BMI and age. The T1DM subjects were normoalbuminuric (24±5/26±9 mg/g in men and 11±5/26±9 mg/g in women) and were only on insulin treatment. Serum glucose levels and HbA1c in T1DM remained significantly elevated above control but were not significantly different between men (178±15 mg/dl and 9.1±2%) and women (203±14 mg/dl and 9.2±3%) subjects. Urinary albuminuria/creatinine excretion rates were not significantly higher in T1DM subjects from their respective controls in either sex. There was no evidence of hyperfiltration as estimated GFR values did not differ between T1DM men and women (82±3 ml/min/1.73m2 in men vs. 88±5 ml/min/1.73m2 in women) or from their respective control values (87.8±6.2 ml/min/1.73m2 in men and 89±5 ml/min/1.73m2 in women). The uAGT/creatinine values were significantly greater in the diabetic subjects (15.3±1.7 μg/g in men vs. 15.2±2.5 μg/g in women) compared to controls (6.0±0.9 μg/g in men vs. 7.9±1.4 μg/g in women), but not different between men and women. Correlation analysis revealed significant relationships of uAGT with both urinary 8-isoprostane excretion (R=0.54, P=0.01 for men and R=0.50, P=0.01 for women) and HbA1c (R=0.37, P=0.01 for men and R=0.53, P=0.01 for women) in both men and women with T1DM. The results indicate that uAGT excretion rates are increased in some diabetic men and women with T1DM on insulin even before the development of proteinuria or hypertension suggesting that activation of the intrarenal RAS is an early event. The monitoring of uAGT levels in diabetic men and women may be potentially useful in determining therapeutic measures to block augmentation of the intrarenal RAS and prevent the development of proteinuria and diabetic nephropathy. This work was supported by NIDDK (1R21DK094006).

6.2 ESTROGEN TREATMENT RESTORES MUSCLE MITOCHONDRIAL CAPACITY AND REVERSES PRO- DIABETOGENIC STATE INDUCED BY Ovariectomy

Maria Torres¹,², Lauren Reese¹,³, Laura Gilliam¹, Katherine Buddo¹, Cheryl Smith¹,³, and Darrell Neuffer²

¹Sch. of Hlth. Sci., Intnl. Univ. of Hlth. & Welfare, 1-3-3 Minami Aoyama, Minato, Tokyo, 107-0061, Japan.
East Carolina Diabetes & Obesity Inst., East Carolina Univ., 115 Heart Dr., Greenville, NC, 27834, Kinesiology, East Carolina Univ., 115 Heart Dr., Greenville, NC, 27834, Physiology, East Carolina Univ., 600 Moye Blvd, Greenville, NC, 27834. 17β-Estradiol (E2) is a key regulator of energy and glucose homeostasis. Menopause comes with a significant decline in E2 production and increases a woman’s risk for developing cardiovascular disease and type-2 diabetes, while hormone replacement therapy decreases the incidence of type-2 diabetes. Mitochondrial dysfunction in skeletal muscle (SM) has been linked to the control of insulin sensitivity. To examine the potential underlying mechanism(s) by which E2 regulates insulin sensitivity in SM, young sexually mature (12 week-old) C57BL/6J female mice were studied 2 weeks after ovariectomy (OVX-2w) followed by 2 weeks of E2 treatment (OVX+E2, 1µg/day) administered via a subcutaneous miniosmotic pump. Control groups included normally cycling females (NC) in the Proestrus stage (high physiological E2 levels) and an OVX group implanted with a saline control pump (OVX-ctl). E2 treatment effectvely reversed fasting hyperglycemia developed in the OVX-2w and OVX-ctl groups (+25%, p<0.001 and +12%, p<0.05 vs NC), decreased fat mass by 48% (p<0.01 vs OVX-ctl) and restored ex vivo-somatic insulin-stimulated glucose uptake back to NC values (p=0.05 vs OVX-2w and OVX-ctl). In permeabilized fibers from red gastrocnemius, maximal state-3 respiration with carbohydrate-derived substrates (pyruvate/malate) was reduced in OVX-ctl (-26%, p<0.05 vs NC) but fully restored in the OVX+E2. Surprisingly, maximal state-3 fatty acid-supported respiration was reduced in OVX-ctl (p<0.05) but fully restored in the OVX+E2. Complex II and III activities were not altered, transfer of electrons between Complexes I and III, as well as between II and III, was also decreased in OVX-ctl (p<0.05 and p<0.005 vs NC, respectively), but completely restored in OVX+E2. Mitochondrial membrane fluidity was decreased in OVX-2w and -ctl (p<0.05 vs NC), but restored in OVX+E2. Expression of OXPHOS complexes and citrate synthase activity were not affected across all groups. These findings provide evidence that E2 restores mitochondrial function in skeletal muscle via non-genomic pathways, by promoting electron transfer efficiency between complexes III and III, thus offering new insights into the mechanism(s) by which menopause, and E2 therapy reverses a pro-diabetic state. NIH DK096907.

6.3 WITHDRAWN

6.4 INCREASED OREXIGENIC INNERRATION OF DOPAMINE NEURONS REDUCES PROLACTIN SECRETION IN OBSESE FEMALE RATS

Natália Toporikova1, Melina Knabe2, Veronika Pogrebna1, Tyra Barrett1, Patrick Ozenne3, and Sarah Blyth4

1Biology, Washington & Lee Univ., 204 W. Washington St., Howe Hall, Lexington, VA, 24450, 2Kinesiology, East Carolina Univ., 115 Heart Dr., Greenville, NC, 27834, Physiology, East Carolina Univ., 600 Moye Blvd, Greenville, NC, 27834. 17β-Estradiol (E2) is a key regulator of energy and glucose homeostasis. Menopause comes with a significant decline in E2 production and increases a woman’s risk for developing cardiovascular disease and type-2 diabetes, while hormone replacement therapy decreases the incidence of type-2 diabetes. Mitochondrial dysfunction in skeletal muscle (SM) has been linked to the control of insulin sensitivity. To examine the potential underlying mechanism(s) by which E2 regulates insulin sensitivity in SM, young sexually mature (12 week-old) C57BL/6J female mice were studied 2 weeks after ovariectomy (OVX-2w) followed by 2 weeks of E2 treatment (OVX+E2, 1µg/day) administered via a subcutaneous miniosmotic pump. Control groups included normally cycling females (NC) in the Proestrus stage (high physiological E2 levels) and an OVX group implanted with a saline control pump (OVX-ctl). E2 treatment effectvely reversed fasting hyperglycemia developed in the OVX-2w and OVX-ctl groups (+25%, p<0.001 and +12%, p<0.05 vs NC), decreased fat mass by 48% (p<0.01 vs OVX-ctl) and restored ex vivo-somatic insulin-stimulated glucose uptake back to NC values (p=0.05 vs OVX-2w and OVX-ctl). In permeabilized fibers from red gastrocnemius, maximal state-3 respiration with carbohydrate-derived substrates (pyruvate/malate) was reduced in OVX-ctl (-26%, p<0.05 vs NC) but fully restored in the OVX+E2. Surprisingly, maximal state-3 fatty acid-supported respiration was reduced in OVX-ctl (p<0.05) but fully restored in the OVX+E2. Complex II and III activities were not altered, transfer of electrons between Complexes I and III, as well as between II and III, was also decreased in OVX-ctl (p<0.05 and p<0.005 vs NC, respectively), but completely restored in OVX+E2. Mitochondrial membrane fluidity was decreased in OVX-2w and -ctl (p<0.05 vs NC), but restored in OVX+E2. Expression of OXPHOS complexes and citrate synthase activity were not affected across all groups. These findings provide evidence that E2 restores mitochondrial function in skeletal muscle via non-genomic pathways, by promoting electron transfer efficiency between complexes III and III, thus offering new insights into the mechanism(s) by which menopause, and E2 therapy reverses a pro-diabetic state. NIH DK096907.

6.5 DIET-INDUCED OBESITY IMPAIRS ESTRUS CYCLE REGULARITY IN FEMALE RATS

Sarah Blyth1, Jacob Roberts2, Kathryn Sarfer1, Joseph Wal1, and Natalia Toporikova1

1Biology, Washington & Lee Univ., 204 W. Washington St., Howe Hall, Lexington, VA, 24450, Neuroscience, Washington & Lee Univ., 204 W. Washington St., Howe Hall, Lexington, VA, 24450, Biochemistry, Washington & Lee Univ., 204 W. Washington St., Howe Hall, Lexington, VA, 24450. Currently, 60% of women in the United States are overweight or obese. This condition can lead to high rates of menstrual irregularity and infertility. Therefore, the objective of this study is to determine the relationship between obesity and reproduction using female rats as a model. At 23 days old, Sprague-Dawley rats were split into two groups: control Chow and high fat, high sugar (HFHS) diet. The HFHS diet consisted of a 52% sucrose solution and food containing 60% calories from fat. After three weeks of diet consumption, HFHS females weighed significantly more than control-fed rats and continued to weigh more for the remainder of the experiment. Additionally, insulin sensitivity was assessed with fasting blood samples and the HOMA-IR calculation. When the rats reached sexual maturity at ten weeks of age, daily vaginal smears were taken over the course of five weeks in order to assess the effect of diet and weight gain on estrous cycling. While over 50% of the cycles occurring in control rats lasted for the normal four-day duration, only about 40% of HFHS rats exhibited the normal four-day pattern. Furthermore, HFHS rats experienced an increased number of days spent in consecutive estrus compared to their control counterparts. It was noted that these days spent in consecutive estrus occurred in the obese subjects after weight gain had occurred, therefore suggesting that obesity induces estrous cycle irregularity in previously normally cycling animals. Rats were ovarioctomized, and ovaries were assessed for follicle development. In conclusion, our findings suggest that diet-induced obesity leads to a disruption in the regularity of estrous cycling, which may result in reduced fertility.

6.6 INFLUENCES OF DIET ON SERUM C-REACTIVE PROTEIN IN UNOBLICTED AND OBSTRUCTED BLADDER OF MALE WISTAR RATS

Terempo Adekaye1, Adetty Fayanju1, and Emiola Olapade-Olaopa2

1Dept. of Physiology, Univ. of Ibadan, Coll. of Med., Ibadan, Nigeria, 2Urology Div., Dept. of Surgery, Univ. Coll. Hosp., Coll. of Med., Ibadan, Nigeria

Introduction: Serum C-reactive protein (CRP) is a marker for inflammation produced by the liver in response to factors released by adipocytes and macrophages. Its level in circulation is linked with benign prostatic hyperplasia (BPH), the primary cause of bladder outlet obstruction (BOO) in adult males. It is also directly related to the severity of lower urinary tract symptoms (LUTS). Diet has been strongly associated with inflammation and some diets have been related to chronic inflammation. We evaluated the effects of diets of varying macronutrient composition on inflammation in the unobstructed bladder and BOO, by assessing its influences on Serum CRP levels. Materials and Methods: Appropriate institutional ethical approval for use of animals in laboratory research was obtained from the Ethical committee of the College of Medicine, University of Ibadan and all protocols were carried out in accordance with the Guide for the Care and Use of Laboratory Animals. Partial BOO was surgically induced in male wistar rats. Animals were prefed on various diets which were continued for 4 weeks after surgery. Rats were divided into sham-operated and BOO groups each with the following: control (normal rats’ feeds), high-carbohydrate (HCD), high-fat (HFD) and high-protein (HPD) dietary groups. After the experimental feeding period, blood was collected and Serum CRP level was assessed using Enzyme-linked immunosorbent assay (ELISA). Results: In the unobstructed bladder, serum CRP was elevated only in animals fed on the HFD (P<0.05). In the obstructed groups also, only the animals fed on the HFD showed an increase in CRP, an increase that was higher (P<0.05) than that in the HFD without obstruction diet. Conclusion: A high fat diet results in an increase in serum CRP in both the unobstructed and obstructed rat bladder. As obesity and BOO are independently associated with the severity of LUTS in both sexes, these findings indicate that the worsening of LUTS seen with BOO and in obese patients may be due in part to increased inflammation.
A HIGH-FAT DIET IMPACTS GLUCOSE AND BLOOD PRESSURE IN FEMALE AND MALE DAHL SALT-SENSITIVE RATS

Santellana Zono1, Kosaworodu Awotech1, and Benjamin Longo Mbeza2

The aim of this study was to determine the impact the highly active antiretroviral therapy (HAART) has on; lipid profile, body composition indices, adiponectin levels and resting energy expenditure. Methods: This was a descriptive and comparative study made up of 81 participants recruited from the public clinics in Mthatha, South Africa. They were categorized into the following three equal groups: 27 HAART treated HIV patients (group A), 27 HAART naïve HIV patients (group B) and 27 healthy non HIV patients (group C). Anthropometric measurements were used to determine basal metabolic index (BMI) and body composition indices. Biochemical tests such as analysis of serum lipids and adiponectin were performed.

Results: The participants with normal nutritional status (BMI of 18.5-24.9 kg/m^2) in the three groups had significant variation in the following parameters: resting energy expenditure, (REE) adiponectin level, lipid profile and ideal weight. (P<0.05)

Conclusion: The treatment of HIV infection with first line antiretrovirals reduces the level of adiponectin, increased the lipid profiles with the exception of HDL, making them more susceptible to atherosclerosis.

Key words: HIV-infection, Highly Active Antiretroviral Therapy (HAART), adiponectin, Lipid profile, Resting Energy Expenditure (REE).
Both groups were using female hormones. Glucose tolerance was assessed using a\ual women, who had undergone bi-lateral orchiectomy (n = 4) or had not (n = 8).\completely understood. To begin to address this question, we recruited 12 trans-sex-\gery and/or female hormone treatment leads to metabolic impairment remains in-\risk and premature mortality. The exact mechanism by which sex re-assignment sur-

20,380 + 1263 vs. 17,823 + 859; AUC insulin: 14,235 + 4694 vs. 5,491 + 1538; re-

ic dysfunction.

steatosis and insulin resistance are prevalent in trans-sexual women treated with cross-
exercise may help reduce the amount of weight loss needed to in-

Opiates cause sex-specific differences in modulation of pain (\Pain\ 155:398, 2014; \Biol Psych\ 76:213, 2014) and respiratory depression (\Br J Anaesthesia\ 100:747, 2008). The mechanisms contributing to the foregoing differences are not understood; yet are clinically relevant for efforts to elucidate sex-specific differences in response to opiate therapy (\Pain Res Manag\ 20:23, 2015). Previous studies using mice showed that leptin levels are sexually dimorphic (\Obesity Res\ 12:1481, 2004) and contribute to the regulation of both breathing (\Resp Physiol Neurosci\ 119:173, 2000) and nociception (\Neuroscience\ 275:531, 2014). This ongoing study is testing the hypothesis that bu-

MORE SEVERE CARDIAC ALTERATIONS IN FEMALE THAN MALE MICE

from the Jackson Laboratory that 1) lack leptin and are obese (Lepob); 2) lack leptin re-

male (M) versus Female (F) differences in VE (saline vs 0.3 mg/kg bupe) were

31297.

10% of weight loss is associated with an increase in adiponectin concentration. In studies involving only women, or women as the majority of the study participants, adiponectin does not significantly increase with up to 11% of weight loss; adiponectin increases with greater than 15% of weight loss. With the addition of exercise, less than 15% of weight loss is associated with an increase in adiponectin concentration. Conclusion: It appears greater weight loss is needed for women than men to show an increase in adiponectin concentration. This may be related to the greater body fat percentage in women than men. Exercise may help reduce the amount of weight loss needed to in-
duce an increase in adiponectin. This work is partially supported by NIH AG031297.

DO WOMEN NEED TO LOSE MORE WEIGHT THAN MEN TO INCREASE CIRCULATING ADIPONECTIN?

Xuewen Wang

1 Exercise Sci., Univ. of South Carolina, 921 Assembly St., PHRC 301, Columbia, SC, 29208.

Adiponectin is an anti-inflammatory protein and plays a protective role in the de-

velopment of atherosclerosis. Obese individuals have lower circulating concentrations than their lean counterparts. However, previous studies do not consistently show in-

creased adiponectin concentrations with weight loss induced by caloric restriction and/or exercise. The purpose of this review is to determine whether sex is a factor in explaining the different study results. Methods: Previous studies that involve caloric restriction and/or exercise-induced weight loss, and have reported adiponectin concentrations before and after weight loss are examined. Percentage of weight lost, method of weight loss (caloric restriction only, exercise only, or combined), number and proportion of participants of each sex, and circulating adiponectin concentration changes are summarized. Results: In studies involving mostly men, approximately 10% of weight loss is associated with an increase in adiponectin concentration. In studies involving only women or women as the majority of the study participants, adiponectin does not significantly increase with up to 11% of weight loss; adiponectin increases with greater than 15% of weight loss. With the addition of exercise, less than 15% of weight loss significantly reduces adiponectin concentration. Conclusion: It appears greater weight loss is needed for women than men to show an increase in adiponectin concentration. This may be related to the greater body fat percentage in women than men. Exercise may help reduce the amount of weight loss needed to in-
duce an increase in adiponectin. This work is partially supported by NIH AG031297.

6.14 SEX, LEPTIN STATUS, AND OBESITY MODULATE BUPRENORPHINE-INDUCED RESPIRATORY DEPRESSION IN MICE

Chelsea Angé1, Wateen Alara1, Sara Mihalko1, Helen A. Buchdovany1, and Ralph Lylle1

1 Anesthesiology, Univ. of Tennessee, 1924 Alcoa Hwy., Box U109, Knoxville, TN, 37920, 2 Anesthesiology & Psychology, Univ. of Tennessee, 1924 Alcoa Hwy., Box U109, Knoxville, TN, 37920.

Opiates cause sex-specific differences in modulation of pain (\Pain\ 155:398, 2014; \Biol Psych\ 76:213, 2014) and respiratory depression (\Br J Anaesthesia\ 100:747, 2008). The mechanisms contributing to the foregoing differences are not understood; yet are clinically relevant for efforts to elucidate sex-specific differences in response to opiate therapy (\Pain Res Manag\ 20:23, 2015). Previous studies using mice showed that leptin levels are sexually dimorphic (\Obesity Res\ 12:1481, 2004) and contribute to the regulation of both breathing (\Resp Physiol Neurosci\ 119:173, 2000) and nociception (\Neuroscience\ 275:531, 2014). This ongoing study is testing the hypothesis that bu-

Sex differences in renal sodium handling in mice on high-fructose and high-salt diet

Al Roudi1, Lining Fan1, Bishr Svar1, and Chezodie Wattunaocha1

1 Pharmacology & Physiology, Oklahoma State Univ., CHS, 1111 W 17th St., Tulsa, OK, 74107.

Many studies suggest a protective element associated with female sex under various conditions that increase blood pressure. Metabolic syndrome and hypertension are linked to high fructose and high salt consumption, and studies indicate sex differences in the physiological effects of these diets. Maintaining sodium balance is of major concern. The goal of this study was to investigate sex differences in mice consuming high levels of both fructose and salt (F+S). Female and male 5-week-old CD-1 intact mice (n=6/group) were placed in metabolic cages and consumed a normal (0.4% salt) diet and water for 4 days followed by 30 days on the F+S diet consisting of a 20% fructose diet and 1% salt solution and a powdered 4% salt chow. Measurements included blood pressure via the tail-cuff method and urinary sodium excretion. Separate mice kept in plastic bins and maintained on the same dietary protocol were used for molecular analysis of the renal sodium transporters via real-time PCR using custom-made PCR arrays (QIAGEN). Results demonstrated that mean blood pressure (MBP,
mmHg) was not different between females and males in the control period (72.3 ± 2.6 and 73.4 ± 1.3, respectively). No change in MBP occurred after the first week of F+S diet; however, at the end of the second week, MBP increased in both females and males (86.4 ± 2.2 vs 77.2 ± 1.0, respectively, p<0.01 from control week) with the female MBP > male MBP (p<0.01). At the end of the 4th week of F+S consumption, female MBP and male MBP were not different (90.1 ± 3.2 vs 89.4 ± 2.6, respectively). Sex differences in mRNA expression of renal sodium transporters were observed with female kidneys showing significantly higher expression of NCC, NKCC2, NHE3, and each of the three ENaC subunits whereas higher expression of Na-phosphate transporter was found in male kidneys. Moreover, females consistently demonstrated lower sodium excretion-to-sodium intake ratio (%) compared to males during the period (60.4 ± 4.4 vs 74.5 ± 3.7, respectively p<0.01). This suggests that consuming the F+S diet for two weeks increased blood pressure in both female and male mice with higher increase occurring in females. We propose the estrogen-induced stimulation on the renal handling of sodium plays a key role in the increased blood pressure in female mice under the F+S diet and studies are underway to test this proposal. This study was funded by NH sponsored Oklahoma INBRE summer research program (PA-12-315).

6.17 SEXUALLY DIMORPHIC MYELOID INFLAMMATORY AND METABOLIC RESPONSES TO DIET-INDUCED OBESITY

Kanakadunya Singer1, Nichi Malley1, Jennifer DelPonostio2, Brian Zamarron2, and Carey Lunnery1

1Pediatrics, Univ. of Michigan, D1205 MPB, 1500 E. Med. Ctr. Dr., Ann Arbor, MI, 48109; 2Immunology, Univ. of Michigan, D1205 MPB, 1500 E. Med. Ctr. Dr., Ann Arbor, MI, 48109.

Background: It is well known in clinical and animal studies that women and men have different disease risk as well as different disease physiology. Women of reproductive age are protected from metabolic and cardiovascular disease compared to post-menopausal women and men. Most murine studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of similar protection in female mice. We have investigated dietary obesity in a mouse model and have directly compared inflammatory responses in males and females. Objective: To understand if sex differences in obesity-induced inflammation contribute to differences in metabolic disease risk. Design: Methods: Male and female C57Bl/6J mice were fed a 60% high fat diet (HFD). Assessments for glucose metabolism were performed as well as evaluations of inflammatory responses in leukocyte activation in bone marrow, blood, and adipose tissue as well as pre-adipocyte populations. BM was cultured from male and female animals and stimulated with LPS to investigate sex differences in inflammatory responses. TLR4+ animals were also challenged to understand the dependence of the inflammatory changes to the presence of TLR4. Monocyte transfer and reciprocal bone marrow transplant experiments were performed to further assess sex differences in bone marrow myeloid responses to obesity independent of host sex. Results: Males and females both gained adiposity after high fat diet, but females had higher energy expenditure rates and dampened inflammatory responses with reduced CD11c+ adipose tissue macrophage populations and inflammatory cytokines. In vivo female marrow produced reduced cytokines after LPS stimulation. TLR4+ males had attenuated but persistent macrophage accumulation while females remained protected. Male BM cells continued to remain primed for a pro-inflammatory responses after monocyte transfer experiments into female host and bone marrow transplantation. Conclusion: Sex differences in high fat diet induced inflammatory activation are due to cell intrinsic differences in hematopoietic responses to obeseogenic cues. This work was supported, in whole or in part, by American Heart Association Scientist Development Grant 14SDG17890004 and Department of Pediatrics Janette Ferrantino Investigator Award.

6.18 SEX DIMORPHISM IN PLASMA SOLUBLE PRORENIN RECEPTOR (sPRR) LEVELS IN OBSESE PATIENTS IS ASSOCIATED WITH TYPE 2 DIABETES MELLITUS IN WOMEN BUT NOT IN MEN

Carla B. Rosales1, Danielle Y. Arita1, Tina Thethi2, Vivian Forseca1, L. Gabriel Navar1, and Mimolina C. Piozo3

Obesity markedly increases the occurrence of Type 2 diabetes mellitus (T2D). Adipose tissue expresses all components of the renin-angiotensin system (RAS), which may contribute to inappropriate RAS activation and increased risk of end-stage organ damage (ESOD) in T2D. Increased circulating levels of soluble prorenin receptor (sPRR) in cardiovascular patients suggest that plasma sPRR might be a potential biomarker of RAS activation. While women with T2D exhibit disproportionately greater burdens of ESOD than men; sex differences in the RAS during T2D are poorly understood. To test the hypothesis that plasma sPRR levels are associated with T2D in obese patients and differ between men and women, we examined plasma samples from 201 patients (mean age, 41 ± 13 years; 39% men), including 107 controls (Ct; BMI<30), 66 obese (Ob; BMI≥30) and 28 obese with T2D (Ob+T2D) patients. The waist to hip ratio (WHR) was used as a measurement of abdominal adiposity. Plasma sPRR levels, measured by ELISA, were significantly higher in Ob+T2D patients (21.5 ± 1.6 ng/mL) compared to Ct (16.5 ± 0.4 ng/mL) and Ob (16.6 ± 0.5 ng/mL; P<0.0001). Urine Albumin/Creat ratio showed a similar trend (Ob: 31.0 ± 2.9; Ob+T2D: 53.1 ± 4.8; Ct: 24.0 ± 2.9 mg/g Cr; P<0.0001). Plasma sPRR levels negatively correlated with WHR in the Ob+T2D (r=−0.62, P<0.005) but not with Ct or Ob patients. Control and Ob+T2D patients exhibited significantly higher plasma sPRR levels compared to women (18.1 ± 0.8 vs. 15.4 ± 0.4 ng/mL; P<0.01). Interestingly, the sPRR differences among groups of same sex were greater in Ob+T2D women compared to Ob (20.7 ± 1.7 ng/mL vs 15.4± 0.4 ng/mL; P<0.0001) and Ob (15.8± 0.6 ng/mL; P<0.0001) patients, but did not differ among men groups. The interaction between sex and group was significant (p=0.036) suggesting that the increase of plasma sPRR levels in T2D patients is greater in women than men. Multiple regression analysis, adjusted by age, WHR, and groups indicated a significant association between the association of obesity, T2D, and its complications. Supported in part by 1 U54 GM104940 from the General Medical Sciences of the National Institutes of Health, which funds the Louisiana Clinical and Translational Science Center (LA CaTS).

6.19 SEX DIFFERENCES IN RENAL GENE EXPRESSION IN A DIET INDUCED OBESITY MODEL OF DIABETIC NEPHEROPATHY (DN)

Victoria Halperin Kuhns1, and Jennifer Pluznick1

1Physiology, Johns Hopkins Univ., Sch. of Med., 725 N. Wolfe St., Baltimore, MD, 21205.

DN is a serious and common complication of diabetes mellitus. Our objective was to identify novel genes differentially regulated in the early stages of DN using an unbiased approach. To this end, male (M) (n=10) and female (F) (n=6) C57Bl/6J mice were fed high fat diet (HFD) for 12 weeks starting from weaning; this induces metabolic syndrome and DN in M but not F. Renal cortex RNA was isolated from all samples, and RNA Seq was performed on 4 M samples from each diet. We identified 1134 differentially expressed genes; of the 22 genes with the highest fold increase or decrease, only 2 (Lipg, Sk7a12) have been previously been studied in a diabetic context. We then utilized a Taqman real-time (RT) PCR array to confirm our initial findings and examine potential sex differences. The array included the 9 most upregulated and 11 most downregulated genes from the RNA Seq data, as well as 12 genes regulated by RNA Seq and of interest to our group (primarily sensory receptors and G proteins). These arrays (31 genes + 18S control) were used to screen F samples (n=3 CD, n=3 HFD), and a second cohort of M samples (n=3 CD, n=3 HFD). All 9 of the genes significantly upregulated with HFD by RNA Seq were also upregulated in the M samples by RT-PCR (Apl12a, Cdc28, Ctna3, Cyp2b10, Lhox2, Popdc3, Ptp5, Sorcs1, Sypnr; p<0.05). However, of the remaining 22 genes (downregulated + other genes of interest); only 3 were confirmed in M by RT-PCR (Gpr12, Gpr14, Tprn1; p<0.05). Furthermore, none of the genes were altered in F by HFD diet (vs. CD). When comparing M vs. F, we found that 10 of the 31 genes were differentially expressed between the sexes both on CD and on HFD (Bmtc, Cdc28, Ctna3, Cyp2b10, Lhox2, Popdc3, Sk22a29, Sorcs1, Sypnr; p<0.05); 6 additional genes (Atp12a, Cyp2a5, Gpr12, Gpr14, Ptp5, Tprn1; p<0.05) were altered between M and F on HFD but not CD. These data demonstrate that our RNA Seq data regarding upregulation were more reproducible than those regarding downregulation, and that changes are sex-specific. The fact that the 9 upregulated genes in M do not change in F (which do not develop metabolic syndrome) implies that renal changes are downstream of metabolic changes, and not non-specific alternations due to an alteration in diet. Thus, we have identified novel renal genes associated with DN, and have demonstrated sex differences in renal gene expression both in control conditions and in DN.

6.20 LEPTIN-MEDIATED ALDOSTERONE SECRETION CAUSES HYPERTENSION IN OBSESE FEMALES

Anne-Claire Huby1, Miriam Cortez-Chooper2, Joseph Canno2, and Eric J. Belin de Chantemelle1

1Physiology, Tulane Sch. of Med., 1430 Tulane Ave, New Orleans, LA, 70112;

Med Sci: 2015 APS Conference Cardiovascular, Renal and Metabolic Diseases: Physiology and Gender ABSTRACTS OF INVITED AND VOLUNTEERED PRESENTATIONS

23
Obesity causes hypertension in males and females. While leptin contributes to obesity-induced hypertension by increasing sympathetic activity, in males, it is unknown whether similar mechanisms trigger hypertension in obese females. Secretes 3-4 times more leptin than males, but do not exhibit high sympathetic tone with obesity. The sympathetic tone is proportionately higher in females to a volume-dependent activation of the hypothalamus-pituitary-adrenal axis (HPA). Despite leptin sensitivity, in lean mice deficient in protein tyrosine phosphatase 1B (PTP1B), high leptin levels attenuate BP response. In females, leptin sensitization and heart rate elevation were observed in male and female mice, but not in female mice. In male mice, leptin treatment increased BP to baseline levels in females PTP1B KO and obese ovariectomized mice. Leptin or leptin receptor deficiency in female ob/ob and db/db mice, abolished obesity-induced increases in renal and plasma aldosterone levels. This study aimed to test the hypothesis that females have a lower plasma K set point than males. Female and male Sprague Dawley rats (n=6) were fasted overnight (16 hr) with free access to water, and then fed a 3 hr meal containing either 0%K or 2%K. Overnight urine volume and aldosterone excretion were similar between sexes. Food consumed during the 3 hr meal was similar in all four groups. After the 2%K meal, plasma K increased in both sexes: to 4.6±0.1 mM in females and to 5.8±0.4 mM in males, associated with 7 fold increases in urine (K:mmol/l): from 0.12±0.03 to 0.9±0.1 in females, and from 0.10±0.03 to 0.72±0.2 in males. Plasma Na (mM) was unchanged in both sexes after meals, but urinary (K:mmol/l) increased in females from 0.3±0.1 to 5.0±0.1, evidence for lower NCC activation. In response to the K rich meal, NCC total protein decreased 20% in females, not males, and NCC-P decreased 50% in both females and males (p<0.05). In summary, lower baseline plasma K set point is unmasked in females after an overnight fast. Despite lower plasma K, the kaliuretic response to a K rich meal are indistinguishable between sexes. Females actively adapt to maintain their plasma K set point at a lower level than males, suggesting that they could be protected against hyperkalemia. NIH DK 083785.

7.2

LONG-TERM ESTROGEN TREATMENT INCREASES RENAL TUBULAR CASTS AND TGFß IN AGED OVARIECTOMIZED LONG EVANS RATS

Margaret Zimmerman1, Dillion Huston1, Brennah Murphy1, Shreyu Kashyap1, Emms Trimmer1, Jill Daniel2, and Sarah Lindsey1

1Pharmacology, Tulane Univ., 1430 Tulane Ave, New Orleans, LA, 70112.
2Psychology, Tulane Univ., 3050 Percival Stern Hall, New Orleans, LA, 70112.

Our lab previously reported that long-term (80 days) estradiol (E2) treatment initiated immediately after midlife ovariectomy (OVX) in Long Evans rats increases proteinuria and renal hypertrophy compared to short-term (40 days) E2 treatment. Therefore, the beneficial effects of E2 on renal health may be dependent on treatment duration. The goal of the current study was to define the long-term and short-term E2 effects on renal health. We hypothesized that long-term E2 had a negative impact on glomerulosclerosis, glomerulocapillary, renal fibrosis, and TGFß expression. Urine, serum, and formalin-fixed renal sections were obtained from ovariectomized Long Evans rats. Food consumed during the 3 hr meal was similar in all four groups. After the 0%K meal, supporting our hypothesis, plasma K, Na and osmolality were all significantly lower in females vs. males. In females, plasma Na decreased 20% in females, not males, and NCC-P decreased 50% in both females and males (p<0.05). In summary, lower baseline plasma K set point is unmasked in females after an overnight fast. Despite lower plasma K, the kaliuretic response to a K rich meal are indistinguishable between sexes. Females actively adapt to maintain their plasma K set point at a lower level than males, suggesting that they could be protected against hyperkalemia. NIH DK 083785.
HIGH SALT ALTERS CELLULAR TRANSCRIPTIONAL AL MIEHU AND HUMAN ANGIOTENSINOGEN EXPRESSION IN A GENDER-DEPENDENT MANNER: AN EFFECT EXACERBATED BY A RISK HAPLOTYPE
Meenakshi Kaw1, Ninit Pani2, and Ashok Kumar2
1Physiology & Pharmacology, Univ. of Toledo Hlth. Sci. Campus, 3000 Transverse Dr., Toledo, OH, 43614.
2Physiology & Pharmacology, Univ. of Toledo Hlth. Sci. Campus, 3000 Arlington Ave, Toledo, OH, 43614.
Angiotensinogen is the substrate for the entire RAS cascade and polymorphisms leading to its overexpression are linked to hypertension. Studies have shown that SNPs in the promoter of the hAGT gene are associated with hypertension. Important-

7.3 APOPTOTIC CELL DEATH IN RENAL ISCHEMIA-
REPERFUSION INJURY IN MALE AND FEMALE SPONTANEOUSLY HYPERTENSIVE RATS (SHR)
Ryan Crislin1, and Jennifer Sullivan1
1Physiology, Georgia Regents Univ., 1210 15th St. Augusta, GA, 30912.
Males develop a greater extent of ischemia-reperfusion (IR) induced injury than fe-
male. Recent studies have shown that renal IR injury is primarily mediated by necro-
sis in male mice, and pilot studies in our lab indicate a sex difference in renal cell death
in SHR with females having more apoptotic cell death than males under control con-
ditions. Based on the potential protective role of apoptosis vs. necrosis, the goal of this
study was to test the hypothesis that female SHR exhibit greater apoptotic cell death
following renal IR compared to male. 13 week old male and female SHR were stud-
ied; control and 45 minute warm renal ischemia followed by reperfusion (N=5-6).
24 hours later, kidneys and plasma were collected to quantitate apoptotic cell
death via TUNEL assay and assess renal injury by measuring plasma creatinine (Cr).
Control female SHR have more apoptotic cells compared to male (M: 1.6±0.6; F: 5.0±1.0 cells per area; p=0.04). Following IR, apoptotic cells significantly increased in
each sex, however the sex difference was abolished (M: 12.0±3.9; F: 18.3±3.9 cells per area; effect of treatment: p<0.01; effect of sex: p=0.1). IR induced injury was con-

FEMALE MICE
Hong Wang1, Lee Ann MacMillan-Crow1, and Xiaoming Zhou1
"Depart. of Pharmacology & Toxicology, Univ. of Arkansas for Med. Sci., 4301 W.
Mardlam St., Little Rock, AR, 72205.
Urinary concentration by the kidney medulla is a primary mechanism to maintain
body fluid balance. The transcription factor NFAT5 is essential for urinary concentra-
tion, because it activates expression of osmoregulatory genes like betaine/glycine
transporter 1 and aldose reductase, which are necessary for the kidney medulla to
survive and function under hypertonicity, and because it contributes to expression of
aquaporin-2, possible aquaporin-1, and urea transporter. Despite the importance of
NFAT5 in urinary concentration, how NFAT5 is regulated in the kidney medulla re-
main largely unknown. Through screening a genome-wide siRNA library against
NFAT5 in urinary concentration, how NFAT5 is regulated in the kidney medulla re-
mains largely unknown. Through screening a genome-wide siRNA library against

1.5 WITHDRAWN
7.6 KIDNEY EPITHELIUM-SPECIFIC KNOCKOUT OF
SHP-1 ENHANCES URINARY CONCENTRATION IN
FEMALE MICE
Hong Wang1, Lee Ann MacMillan-Crow1, and Xiaoming Zhou1
Depart. of Pharmacology & Toxicology, Univ. of Arkansas for Med. Sci., 4301 W.
Mardlam St., Little Rock, AR, 72205.
Urinary concentration by the kidney medulla is a primary mechanism to maintain
body fluid balance. The transcription factor NFAT5 is essential for urinary concentra-
tion, because it activates expression of osmoregulatory genes like betaine/glycine
transporter 1 and aldose reductase, which are necessary for the kidney medulla to
survive and function under hypertonicity, and because it contributes to expression of
aquaporin-2, possible aquaporin-1, and urea transporter. Despite the importance of
NFAT5 in urinary concentration, how NFAT5 is regulated in the kidney medulla re-

1.5 WITHDRAWN
7.6 KIDNEY EPITHELIUM-SPECIFIC KNOCKOUT OF
SHP-1 ENHANCES URINARY CONCENTRATION IN
FEMALE MICE
Hong Wang1, Lee Ann MacMillan-Crow1, and Xiaoming Zhou1
Depart. of Pharmacology & Toxicology, Univ. of Arkansas for Med. Sci., 4301 W.
Mardlam St., Little Rock, AR, 72205.
Urinary concentration by the kidney medulla is a primary mechanism to maintain
body fluid balance. The transcription factor NFAT5 is essential for urinary concentra-
tion, because it activates expression of osmoregulatory genes like betaine/glycine
transporter 1 and aldose reductase, which are necessary for the kidney medulla to
survive and function under hypertonicity, and because it contributes to expression of
aquaporin-2, possible aquaporin-1, and urea transporter. Despite the importance of
NFAT5 in urinary concentration, how NFAT5 is regulated in the kidney medulla re-

1.5 WITHDRAWN
7.6 KIDNEY EPITHELIUM-SPECIFIC KNOCKOUT OF
SHP-1 ENHANCES URINARY CONCENTRATION IN
FEMALE MICE
Hong Wang1, Lee Ann MacMillan-Crow1, and Xiaoming Zhou1
Depart. of Pharmacology & Toxicology, Univ. of Arkansas for Med. Sci., 4301 W.
Mardlam St., Little Rock, AR, 72205.
Urinary concentration by the kidney medulla is a primary mechanism to maintain
body fluid balance. The transcription factor NFAT5 is essential for urinary concentra-
tion, because it activates expression of osmoregulatory genes like betaine/glycine
transporter 1 and aldose reductase, which are necessary for the kidney medulla to
survive and function under hypertonicity, and because it contributes to expression of
aquaporin-2, possible aquaporin-1, and urea transporter. Despite the importance of
NFAT5 in urinary concentration, how NFAT5 is regulated in the kidney medulla re-

217A and Hap -6G (-6G/217G) so as to examine the transcriptional regulation of the hAGT in an in vivo setting. This study is designed to study the effects of a high-sodium diet on the transcriptional milieu of hepatic and renal tissues with consequent effects on the hAGT expression in our two haplotypes. Male and female TG mice were placed on 4% NaCl for a period of 8 weeks. High-salt diet upregulated the hAGT expression in both liver and kidney tissues (p<0.05); however, this effect is only observed in male mice with no effect in adult females. Interestingly, the hAGT activation observed was significantly (p<0.05) greater in the -6A haplotype males as compared to -6G males. High-salt increased the expression of transcriptional regulators including, CEBP, HNF4 and GR. This effect was also limited to the males of our two TG lines suggestive of a gender-dependent effect of NaCl on the cellular transcriptional apparatus. Complementary ChIP assay confirmed enhanced transcription factor (TF) binding to the chromatin of male -6A TG mice as compared to their -6G counterparts after high-salt diet treatment. Thus, for the first time we show an effect of high-salt on cellular transcriptional apparatus that is gender-dependent, with consequent activation of the hAGT in male TG mice only. Crucially, increased TF affinity of the chromatin in -6A TG mice leads to higher salt-induced AGT levels in this haplotype. These observations could partly account for increased salt-sensitivity of adult males that, in turn, is governed by the “risk” haplotype. Identifying these -6A haplotype individuals will help guide therapeutic lifestyle changes in patients with essential hypertension.

7.10 DIFFERENT RESPONSE TO DOPAMINE OR TO BRADYKININ INHIBITION IN OVARIECTOMIZED ADULT WISTAR RATS UNDER HIGH SODIUM INTAKE

Fernando R. Ibarra1, Sandra G. Vlachovsky1, Giselle Moiron2, Pablo J. Azurmendi2, Elisabet M. Oddo2, Elvira E. Arrizurieta2, Susana Nowicki3, and Luis A. Di Ciano4
In previous work, we have shown that ovariectomized (oVx) adult Wistar rats develop high blood pressure upon high sodium intake (HS). Among other facts, oVx rats have a lower sodium excretion and renal overproduction of total and dephosphorylated Na+, K+-ATPase (NKA) as compared with intact female (IF) (1, 2). oVx rats also have a decreased expression of dopamine D1 receptor (D1R) (2) and a higher urinary kallikrein excretion than IF rats (3). With the aim to compare the relative contribution of dopamine and bradykinin-kinin systems to the deranged regulation of sodium balance and blood pressure control in ovariectomy, we studied IF and oVx rats on HS after both dopamine or bradykinin blockade. Ovariectomy was performed in Wistar rats at 60 days of age and rats were studied 90 days post oVx. The rats received 1% NaCl in drinking water on the final 5 days. D1R (SCH 23390, 1mg/kg bwt/day, sc) or bradykinin B2 receptor (HOE 140, 7µg/100 g bwt/day, sc) were blocked during the last two days. In IF rats, D1R blockade caused a decrease in urinary sodium (UNaV = 3.14±0.03 vs 1.65±0.09 mmol/100g bwt/day; p<0.01), in volume excretion (V = 11.52±0.6 vs 6.13±0.19 ml/100g bwt/day; p<0.05) and mean arterial pressure (MAP) (90±7 vs 139±4 mmHg; p<0.001). Interestingly, MAP in female SR was lower than in SS.5BN females, whereas MAP in female SR was higher than in SS.5BN females, and with DHT there was a more robust increase in MAP as compared to female SS.5BN females. In addition, placebo female DS rats, despite the low salt diet, had significantly higher MAP than the other groups (p<0.001). These data suggest that an active CYP4A α-ohydroxylase/20-HETE system is necessary for hyperandrogenemia to increase BP in our IF model. The data also suggest alternative treatments, namely 20-HETE synthesis inhibition, to attenuate elevated BP in women with PCOS. Supported by NIH-R01HL66072, P01HL17971 (JFR), 1UP01864015 (ROM).

7.12 MULTIPLE ESTROGEN RECEPTOR SUBTYPES SELECTIVELY INFLUENCE FLUID INTAKE IN FEMALE RATS

Jessica Santollo1, and Derek Daniels2
1Dept. of Psychology, Univ. at Buffalo, Park Hall, Buffalo, NY, 14260.
2Department of Biology, The University of Buffalo, Buffalo, NY 14260. Estradiol (E2) decreases fluid intake in female rats. Although this has been known for decades, the underlying mechanisms are still unknown. Our understanding of these mechanisms is complicated by the existence of five identified estrogen receptor (ER) subtypes including the classically recognized ERα and ERβ proteins and more recently discovered membrane-associated receptors: GPER-1, ERX and Gα13ER. In addition to the complexity offered by the existence of multiple subtypes, these receptors can act through multiple mechanisms (surface receptors or transcription factors) and can engage a variety of intracellular signaling pathways. In this series of experiments, we first tested the hypothesis that activation of membrane-associated ERs decreases fluid intake in ovariectomized rats. In support of this hypothesis, we found that angiotensin II (AngII)-stimulated fluid intake was decreased (p<0.05) after treatment with an estradiol-BSA conjugate that can only activate receptors on the cell surface. Follow up studies were done to rule out the possible role of its metabolites. AngII induces renal water excretion by releasing vasopressin (ADH). To examine the role of AngII on fluid intake, we found unexpected receptor-selective effects on AngII-stimulated water and saline intake. Specifically, we found that AngII-stimulated water intake was decreased after selective activation of ERα and that AngII-stimulated saline intake was decreased after selective activation of ERβ or GPER-1 (p<0.05). Further, analysis of drinking microstructure revealed differences in the underlying behavioral difference in the respective effects of ERα and ERβ on water and saline intakes. This analysis found that the ERα-mediated decrease in water intake was a function of a selective decrease in burst number (p<0.05), suggesting a change in post-ingestive feedback. In contrast, the ERβ-mediated decrease in intake was a function of a change in burst size (p<0.05), suggesting a change in the orosensory value of the fluid. Although activation of ERβ and GPER-1 similarly affected saline intake, without a concomitant effect on water intake, the decrease in saline intake after GPER-1 treatment was mediated by a change in burst number (p<0.05), unlike the change in burst size that was underlying the ERβ-mediated change in intake. Together these findings demonstrate that specific ERs selectively influence water and saline intake through specific mechanisms in the female rat.

7.13 6B-HYDROXYTESTOSTERONE, A CYTOCHROME P450 1B1-DERIVED METABOLITE OF TESTOSTERONE PLAYS AN IMPORTANT ROLE IN RENAL DYSFUNCTION ASSOCIATED WITH ANGIOGENIN-II INDUCED HYPERTENSION IN MALE MICE

Ajeeth Pingili1, Shyamala Thirunavukkarasu1, Mehran Kana1, and Kafait Malik1
1Department of Biology, The University of Buffalo, Buffalo, NY 14260. Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women during their reproductive age, and is associated with hyperandrogenemia, increased blood pressure (BP) and increased cardiovascular risk. Several studies have shown that elevated androgens increase cytochrome P450 (CYP) 4A expression and 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis in rats. In particular, evidence from our laboratory indicates that CYP4A2 expression is elevated in the renal vascular hyperandrogenemic female Sprague Dawley rats. Dahl Salt Sensitive (DS) rats have a deficiency in CYP4A α-ohydroxylase/20-HETE system in the kidneys compared with either Dahl Salt Resistant (DR) or SS.spr/ -congenic strain rats. Thus if an increase in 20-HETE, mediated via CYP4A, is necessary for the increase in BP in HAF rats, then DS rats that lack CYP4A may be resistant to hyperandrogenic increases in BP. In the present study we tested the hypothesis that BP in DS rats maintained on low salt diet would be unresponsive to hyperandrogenemia. Four weeks old female Sprague-Dawley (DS) female and male rats were im- plated with dihydrotestosterone (DHT; 7.5mg/904) or placebo pellets (n=6-8/group). At 14 weeks of age, radiotelemetry transmitters were implanted, and after two weeks recovery, mean arterial pressure (MAP) was measured for 5 days. DHT significantly increased MAP in female SR rats (placebo: 84±4 vs. DHT: 95±1 mmHg, p<0.05) and female SS.spr rats (placebo: 104±1 vs. DHT: 130±6 mmHg, p<0.0005). In contrast, DHT did not change MAP in female DS rats (placebo: 160±4 vs. DHT: 153±4 mmHg, p<0.05). Interestingly, MAP in female SR was lower than in SS.spr females, and with DHT there was a more robust increase in MAP as compared to female SS.5BN females, and in female SR rats. In addition, placebo female DS rats, despite the low salt diet, had significantly higher MAP than the other groups (p<0.001). These data suggest that an active CYP4A α-ohydroxylase/20-HETE system is necessary for hyperandrogenemia to increase BP in our HAF model. The data also suggest alternative treatments, namely 20-HETE synthesis inhibition, to attenuate elevated BP in women with PCOS. Supported by NIH-R01HL66072, P01HL17971 (JFR), 1UP01864015 (ROM).
Angiotensin II (ANGII) is a critical regulator of body fluid homeostasis. Drinking after injection of ANGII has been an important model of the behavioral regulation of fluid homeostasis, and studying ANGII-induced drinking has led to findings that extend to the regulation of blood pressure. Although acute ANGII potently stimulates drinking, repeated injections of ANGII have bivalent effects; daily injections of ANGII sensitize responses, but more acute repeated injections cause a transient desensitization. This desensitization reduces water intake stimulated by ANGII, without reducing the natriuretic effect of the peptide. Moreover, we found sex differences in the desensitizing potency of AngII; females did not show the desensitization that is reliably observable in male rats. Preliminary studies suggest that this resistance to desensitization is not affected by ovarian hormones, and ongoing studies are testing the importance of testicular hormones. Additional studies found that the bivalent effects of ANGII can counter each other. Specifically, we found that the sensitization of intake normally occurring after daily AngII administration is not induced if the daily injections are given with the timing of a desensitizing treatment, suggesting that desensitization can ameliorate sensitization. Given the highly conserved sex differences in blood pressure, and the role that ANGII-sensitization may play in the development of hypertension, it is tempting to speculate that properly timed increases in ANGII may help thwart sensitization and, therefore, could be used to prevent or treat hypertension. This would be a radical departure from current anti-hypertensive drugs that act by reducing angiotensinergic tone. Funding provided by NIH HL091911.

8.3 ADIPOKINES, OBESITY, AND SEX: IMPLICATIONS FOR CARDIOVASCULAR FUNCTION

Gina Yosten1, and Willis Samson1

1Pharmacology & Physiology, St. Louis Univ., 1402 S. Grand Blvd., St. Louis, MO, 63104.

In addition to the storage of lipids, adipose tissue contributes to energy homeostasis by producing multiple adipokines, such as leptin and nesfatin-1, which regulate food intake and energy expenditure. Plasma levels of these adipokines, which inhibit appetite, increase as a function of adipocyte mass, thus decreasing food intake during times of energy excess. In addition to modulating energy intake, these adipokines also impact cardiovascular function, particularly through activation of the sympathetic nervous system. Like leptin, nesfatin-1 interacts with the central melanocortin system to exert its hypertensive effects. Interestingly, melanocortin neurons are heavily influenced by sex hormones, particularly estrogen, which regulates the responsiveness and activity of these neurons. The functional implication of this observation is that females may respond to the hypertensive effects of adipokines, like nesfatin-1, differently than males. We previously reported that male rats exhibit significant, dose-related increases in blood pressure following injection of nesfatin-1 into the lateral cerebroventricle, and that this effect could be blocked by pretreatment with a melanocortin receptor antagonist. In contrast, the hypertensive effect of nesfatin-1 in females appears to be dependent upon sex hormone levels, as the response to nesfatin-1 varied according to stage of the estrous cycle. We propose that this sex-related difference in the hypertensive effect of nesfatin-1 is due to the modulatory activity of estrogen on nesfatin-1-responsive melanocortin neurons, and that loss of estrogen, as observed in menopause, will lead to enhanced nesfatin-1 signaling and hypertension.

11.0 DEVELOPMENTAL PROGRAMMING OF CARDIOVASCULAR, RENAL AND METABOLIC DISEASES: ROLES OF GENDER AND SEX

11.1 EFFECT OF ESTROGEN IN GENDER-DEPENDENT FETAL PROGRAMMING OF ADULT CARDIOVASCULAR DYSFUNCTION

Daiso Xia1

1Dept. of Basic Sci., Ctr. for Perinatal Biology, Loma Linda Univ. Sch. of Med., 11234 Anderson St., Loma Linda, CA, 92530.

Epidemiologic studies have demonstrated that intrauterine adverse environment increase the risk of cardiovascular disease in adulthood. However, previous studies in humans and different animal model have shown that whether individual develops a cardiovascular dysfunctional phenotype may dependent on its genetic background, postnatal life style, age, and gender. Recently, in maternal hypoxia and nicotine exposed pregnant rat model we have demonstrated a sex difference in fetal programming of adult hypertensive and heart ischemia-sensitive phenotype. We have further examined the mechanisms linking the fetal stress and increased risk for cardiovascular dysfunction in adulthood with an emphasis on gender differences and the potential role of estrogen in mediating sexual dimorphism. In perinatal nicotine exposed rat
model, our data support an important role of estrogen in the sex difference of perinatal nicotine-induced programming of vascular dysfunction, and suggest that estrogen may counteract heightened reactive oxygen species production, leading to protection of females from development programming of hypertensive phenotype in adulthood. Contrast to nicotine exposed animal model, the data in maternal hypoxia rat model indicate that estrogen is not directly responsible for the sex dimorphism in fetal programming of heart ischemic vulnerability but suggest a novel mechanism of estrogen in protecting female hearts against ischemia and reperfusion injury. (Supported by NIH/HL11861, NIH/DA02510, and by the regents of the University of California Tobacco Related Disease Research Program grant #22XT-0022).

11.2 SEX DIFFERENCES IN CARDIOVASCULAR AND METABOLIC RISKS DUE TO EARLY LIFE STRESS
Angelis Loria
Pharmacology & Nutritional Sci., Univ. of Kentucky, 900 S. Limestone, CTV 562, Lexington, KY, 40536.

Clinical studies indicate that adults exposed to adverse childhood experiences or early life stress (ELS) develop several risk factors for cardiovascular and metabolic disease including higher systolic blood pressure, increased BMI, and clustering of metabolic risk biomarkers. Maternal separation is an established model of ELS during the early gestational period in rodents ("first hit"). This procedure induces heightened reactivity to stressors later in life ("second hit"), altering the normal physiological responses. Despite similar blood pressure and heart rate under baseline conditions, ELS primes the angiotensin II (AngII)-induced hypertension in male and female rats. However, we found that impaired renal function and imbalanced plasma sex hormones were present in male but not female rats exposed to ELS. Additionally, et-1-induced studies revealed that AngII-mediated responsiveness in vasculature is exaggerated in male rats only. Both male and female rats demonstrate reduced baroreflex sensitivity; however, only male rats display signs of increased sympathetic outflow to the kidney including lower posterior venter values which is normalized following bilateral renal denervation. In order to investigate the ELS-induced metabolic disease risk, we challenged maternally separated rodents with a chronic high fat diet (HFD, 60% kcal from fat). We found that females display a much more exaggerated rise in plasma insulin and leptin levels, impaired glucose tolerance and increased visceral fat mass compared to males. Taken together, these data indicate that ELS induces a sex-specific risk to develop chronic diseases that is dependent on the type of stressor. References: Loria AS, Yamamoto T, Pollock DM, Pollock JS. Early Life Stress induces renal dysfunction in adult male but not female rats. Am J Physiol Renal Physiol. 15:304(2):R121. Murphy MO, Evans L, Mahanes T, Loria AS. Impaired baroreflex response correlates with reduced conduit vessel contractility in female maternally separated rats and reveals α-adrenergic receptor dysfunction. FASEB J, 29, 968:11.

11.3 MATERNAL UNDERNUTRITION SIGNIFICANTLY IMPACTS OVARIAN FOLLICLE NUMBER AND INCREASES OVARIAN OXIDATIVE STRESS IN ADULT RAT OFFSPRING
Deborah Sloboda
Biochemistry, McMaster Univ., 1280 Main St. West, HSC 4H30A, Hamilton, L8S 3Z4, Canada.

There is now considerable epidemiological and experimental evidence indicating that early life environmental signals, including nutrition, affect development. A relationship exists between the periconceptional, fetal and early infancy phases of life and the subsequent development of chronic diseases including obesity and Type 2 diabetes. This relationship, the "developmental origins of health and disease" (DOHaD), suggests that the embryo/fetus/neonate makes adaptations in response to early life cues, resulting in adjustments in homeostatic systems that are maladaptive in postnatal life, leading to an increased risk of chronic disease and/or the inheritance of risk factors across generations. Reproductive maturation and function is similarly influenced by early life events. This should not be surprising, since the primordial germ cell pool is across generations. Reproductive maturation and function is similarly influenced by early life events. This should not be surprising, since the primordial germ cell pool is.

As with contractions, our data suggest peripheral microvascular endothelial dysfunction in ELS. We have also demonstrated that the androgenic milieu is a key element to this endothelial dysfunction, and that the androgen effects on the endothelium are mediated by the ETαR in AE-PCOS. These findings illustrate an interaction between androgens and the endothelin system on cardiovascular function and identify a potential new target for treatment in women with AE-PCOS.

12.0 NON-REPRODUCTIVE EFFECTS OF SEX HORMONES AND RECEPTORS-B
12.1 ANDROGEN EFFECTS ON ENDOTHELIAL FUNCTION IN WOMEN IN POLYCYSTIC Ovary SYNDROME
Nina Stachenfeld

Polycystic ovary syndrome (PCOS) is the most common reproductive endocrinopa-thy in young women, affecting 6-10% of women of reproductive age. Our studies focus on humans, and address the most common PCOS phenotype, androgen excess (AE)-PCOS. AE-PCOS is associated with insulin resistance and elevated endothelin-1 (ET-1) levels, indicating poor endothelial function. Endothelin-1 binding two receptor subtypes, endothelin A (ETAR) and endothelin B (ETBR). To control and isolate androgen effects on microvascular circulation in humans, we administer a gara-dopin-releasing hormone antagonist for 7-11 days in obese, otherwise healthy young women and obese young women with AE-PCOS, adding methyl testosterone on days 8-11. We use cutaneous microdialysis to perfuse ETAR and ETBR blocking agents and use laser Doppler flowmetry to measure cutaneous microcirculatory responsiveness. These combined techniques enable us to examine the interaction of these subtype receptors with androgens on the microcirculation in women with AE-PCOS using mildly invasive methods, that are well tolerated by humans. With this model of microcirculation, we have demonstrated that ETAR mediates vasoreactivity and ETBR mediates vasodilation in women with and without AE-PCOS, but vasoilation is blunted in women. Only ETBR are expressed in the endothelium, so our data suggest peripheral microvascular endothelial dysfunction in AE-PCOS. We have also demonstrated that the androgenic milieu is a key element to this endothelial dysfunction, and that the androgen effects on the endothelium are mediated by the ETαR in AE-PCOS. These findings illustrate an interaction between androgens and the endothelin system on cardiovascular function and identify a potential new target for treatment in women with AE-PCOS.

12.2 MECHANISMS INVOLVED IN CARDIOPROTECTION IN FEMALE MECHANISMS INVOLVED IN CARDIOPROTECTION IN FEMALES: ROLE OF ESTROGEN AND ESTROGEN RECEPTORS (ERS)
Josephine Harrington, Sara Menazza, Jinhui Sun, and Elizabeth Murphy
1Pharmacology & Nutritional Sci., Univ. of Kentucky, 900 S. Limestone, CTV 562, Lexington, KY, 40536.
2Biochemistry, McMaster Univ., 1280 Main St. West, HSC 4H30A, Hamilton, L8S 3Z4, Canada.

Our goal was to gain insight into the role of estrogen and ERs in reducing ischemia reperfusion (IR) injury and hypertrophy in females. To examine the role of plasma membrane bound ERs, we used a non-nuclear selective ERα modulator (estrogen-dendrimer conjugate, EDC). We treated ovariectomized WT mice with EDC, estradiol or dendrimer control using osmotic mini-pumps. Using a Langendorff perfused heart model of IR we found that EDC reduced IR injury. We studied cardiac-speci-fic ERα knockouts (csERα-KO) mice, and found that EDC treatment significantly decreased infarct size and improved functional recovery compared to the vehicle-treated csERα-KO mice, suggesting that the protection is not mediated by plasma membrane ERα. To induce hypertrophy, male and female mice were treated with angiotensin II or saline via osmotic mini-pumps. At 3 weeks, females showed significantly less cardiac hypertrophy and better cardiac function than males. We also studied female and male mice with csERβ-/-KO and their WT littermates. The reduction in hypertrophy observed in the WT females was not altered by ablation of ERα. We also evaluated differences in long non coding RNA and miRNA between males and females that might contribute to these sex differences. Our findings show that females exhibit significantly less angiotensin II-induced hypertrophy than males at 3 weeks of treatment and the reduction in hypertrophy in females is retained in hearts lacking ERα, suggesting that ERα is not required for either the reduction in hypertrophy or cardio-protection. Funded by NIH intramural program.

12.3 SEX AND SEX HORMONE EFFECTS IN CARDIO- VASCULAR PATHOPHYSIOLOGY
Vera Regitz-Zagrosek
NIH, NIH, 10 Center Dr., Bethesda, MD, 20892.

Our goal was to gain insight into the role of estrogen and ERs in reducing ischemia reperfusion (IR) injury and hypertrophy in females. To examine the role of plasma membrane bound ERs, we used a non-nuclear selective ERα modulator (estrogen-dendrimer conjugate, EDC). We treated ovariectomized WT mice with EDC, estradiol or dendrimer control using osmotic mini-pumps. Using a Langendorff perfused heart model of IR we found that EDC reduced IR injury. We studied cardiac-spe-
Increased circulating volume, pressure overload and mineralocorticoid excess contribute differently to cardiovascular pathophysiology in women and men, in male and female rodents. In order to understand sex-specific mechanisms, we analyse different stressors like exercise, pressure overload and myocardial ischemia and their sex-specific effects on the heart. We are using animal models and cell culture models of hemodynamic and neuro-hormonal stress as well as animal models with modified sex hormone receptor expression- ER alpha and ER beta cell specific knockouts and overexpression. We studied the interaction of the stressors with sex and sex hormone effects. Exercise leads to physiological myocardial hypertrophy. Females develop more physiological myocardial hypertrophy than males with better metabolic adaptation. Pressure overload and/or mineralocorticoid excess lead to pathological myocardial hypertrophy. Fibrosis, a hallmark of pathological myocardial hypertrophy, is more prominent in males than in females. Estrogen is protective in females but may be harmful in males in some conditions. Estrogen receptor alpha and beta activation have different effects on fibrosis and metabolism in females and males. Female animals under stress maintain energy metabolism better than males and have more favourable Calcium signalling. Women with aortic stenosis develop less eccentric myocardial hypertrophy with less fibrosis than men and this is associated with better myocardial survival. Adaptation to cardiovascular stress and end organ damage are sex specific and specific approaches to treatment may lead to further benefit.

13.0 RESPIRATORY

13.1 SEX DIFFERENCES IN DIET AND INHALED OZONE (O₃) INDUCED METABOLIC IMPAIRMENT

Urvila Kodavanti1, Virginia Bose2, Mette Schildaveier1, Christopher Gordon3, Kimberley Larrea4, Pamela Phillips5, Allen Ledbetter6, Destina Miller7, Samantha Snow8, and Judy Richards9

Diet and environmental stressors, including inhaled pollutants, have been implicated in the development and progression of metabolic diseases. Since metabolic processes are influenced by sex and dietary interventions. Male and female Brown Norway rats were fed either normal, high fructose or high fat diet beginning 1 month of age for 3 months. At 4 months they were exposed to O₃ (0.5 ppm) for 5 hours. The body fat composition and glucose tolerance (GT) were measured prior to O₃ exposure. GT was also examined immediately after air or O₃ exposure (n=10). Pulmonary toxicity and systemic metabolic changes were examined immediately after O₃ exposure in a separate group of rats (n=10). Compared to males, female BN rats fed a normal diet had relatively greater body fat %, higher levels of serum triglycerides, cholesterol and glucose, and lower leptin and insulin. At baseline, male rats fed high fat diet had increased body fat but not females. GT did not differ between males and females but high fat diet induced a small degree of glucose intolerance in both males and females. High fructose but not high fat diet induced marked increases in circulating triglycerides in both males and females. High fructose but not high fat diet induced marked increases in circulating triglycerides in both males and females. O₃ exposure increased lung injury as determined by lavage fluid protein and albumin analysis in females fed all diets but only in high fat diet males. Both males and females had >10% of cells as eosinophils in the lung lavage fluid. No specific differences in BALF inflammatory cells were noted between air and O₃ exposed rats of either sex on any diet. However, both diets decreased baseline levels of neutrophils in each sex. O₃ induced glucose intolerance in each sex regardless of diet. O₃ also increased circulating leptin (females>males) regardless of diet. No O₃ effects occurred in circulating cholesterol or triglycerides in either sex. These data provide the evidence that although dietary interventions did not have major sex specific effects, female BN rats are more susceptible to O₃-induced pulmonary and metabolic effects. (Does not reflect USEPA policy.)

13.2 LUNG ANTIOXIDANT LEVELS IN NEONATAL RATS AND RESPONSE TO AIR POLLUTION: INFLUENCE OF SEX AND STRAIN

Eugene Gibbus-Flournoy1, Judy Richards2, Erin Hines3, Katherine Krust4, Joel Norwood5, Gary Hatch5, Michael Maida6, and Jun Dye7

Emissions from biomass combustion in rudimentary cookstoves (CS) are causally linked with higher incidence of respiratory infections, especially in women and children. As with other air pollutants, oxidative insults are believed to play a major role in the etiology of CS-related lung pathologies. We used rodent models of oxidative insult to examine the health benefits derived from and of more efficient CS. Previously, we infected neonatal Fischer (FIS) rats with a bat-adapted influenza virus, and showed that acutely, FIS pups developed minimal lung changes. We have also assessed ozone (O₃)-induced effects in adult FIS rats and found that they exhibited the least change compared to Sprague-Dawley (SD) or Wistar (W) rats. This pilot study evaluates lung antioxidant levels in air- and O₃-exposed neonatal FIS, SD, and W rats to determine which strain was most susceptible to early life oxidative insult. Smaller litters in time-pregnant FIS rats indicated uneven group sizes. FIS pups were 30-40% smaller than SD or W pups. Subsets of female (F) and male (M) 14- and 21-d-old (pre- and weaning) pups were exposed to air, 0.5, or 1.0 ppm O₃ for 2.5 and 5 hours. In controls, body wt increased ≤60% in 14-21-d rats. At weaning, no sex differences in body wt or lung antioxidants were apparent within strains. Except for increased uric acid (UA) in 14-d F rats, no age/stage differences were apparent for lung UA, total protein, or glutathione (GSH) peroxidase/reductase (per gm of wet lung wt). At 14-d, FIS rts had 6-22% more GSH than SD or W rats, respectively. GSH decreased in all strains from 14-21 d. Lung SOD also decreased in all strains from 14-21 d, with FIS rats having 25-35% less than SD or W or rats. Post-O₃, FIS F pups of both strains had minimal changes. Conversely, F 21d rats post-O₃ showed minimal change while M pups had increased SOD (25-31%) and M SD pups had increased GSH peroxidase/reductase (18%). In summary, FIS rats appear relatively resistant to lung insult, while neonatal SD and W rats appear more prone to oxidative effects than M of the same age. We will pursue using non-FIS F pups to evaluate CS emission effects on susceptibility to early life infection. (Abstract does not reflect USEPA policy.)
However, there was no evidence of 5-HETE production when cells were incubated for 5 hrs. 15-LO and 5-LO protein expression increased compared to untreated cells. These findings suggest treadmill training is more effective in attenuating age-associated reductions in muscle force and cardiorespiratory fitness in male than female mice. Funded by NIH R15AR060469.

13.6 EFFECT OF EXERCISE ON RED BLOOD CELL VARIABLES IN HIGHLY TRAINED FEMALE ATHLETES

Dhritika Aldher1

1Pharmacy & Toxicology, Med. Coll. of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226.

Pulmonary arterial hypertension (PAH) has a consistently higher risk occurrence in female than male mice. The bioactive lipid arachidonic acid is metabolized to a variety of compounds that effect pulmonary vascular function. Key enzymes in the biosynthetic pathway of arachidonic acid are altered by estrogen. Our central hypothesis is that estrogen has a novel mechanism whereby estrogen regulates the arachidonic acid pathway which may potentially contribute to alterations in vascular function in sex-based diseases like PAH. Supported by HL093181 and AHA-0151412. Reference: Gilbert NC, Ruiz Z, Nieu DB, Wright MT, Bartlett SG, Boeglin WE, Brasil AR, Newcomer ME. FASEB J. 832259, 2012.

13.5 MUSCULAR AND CARDIORESPIRATORY ADAPTATIONS TO TREADMILL TRAINING WITH AGING ARE BLUNTED IN FEMALE COMPARED TO MALE MICE

Kimberly Huey1, Ty Drake1, Gabrielle Dillon1, and Christopher Lee1

1Pharmacy & Health Sci., Drake Univ., 2720 Forest Ave, Fitch 105, Des Moines, IA, 50311.

Aging is associated with reductions in muscle strength and cardiovascular fitness that may be offset with regular exercise training. However, it is unclear if these exercise adaptations are affected by gender due to factors such as different hormonal and/or anatomical changes with aging. We tested the hypothesis that aging reduces muscle function and cardiorespiratory endurance; however, treadmill (TM) training exercise will attenuate these aging-associated decreases in strength and fitness in both male and female mice. In vivo plantarflexor maximal force and fatigability (% of max force after 10 contractions) were measured in young (4 mo. old) and aged (24 mo. old) sedentary (SED) male and female mice and following 2 wks of TM training (45 min/day, 5 days/week). Cardiorespiratory adaptations were measured in isolated hearts and in vivo treadmill tests. Maximal muscle force was lower in aged than young SED mice in both genders (1.1±0.04 vs. 1.6±0.07 g/g body mass for males and 1.1±0.03 vs. 1.5±0.01 g/g body mass for females, respectively, p<0.05). In young groups, TM did not increase force over SED in either gender. In aged male groups, TM was associated with 26% higher maximal force than SED mice (p<0.05), but was still lower than young groups. In contrast in female aged groups, TM was not associated with significant increases in maximal muscle force over SED (15% increase). However, all pre-tests, young groups ran longer than aged groups (p<0.05). Treadmill test time was not increased in any SED group. Similar increases in treadmill test time after TM training occurred in young and aged male mice with respective 1,092±130 and 1,133±128 second increases from pre to post test (p<0.05). In contrast in female mice, increases in treadmill test time with TM training from pre to post were greater in than young and aged groups, 1,046±141 and 505±173 seconds, respectively (p<0.05). These findings suggest treadmill training is more effective in attenuating age-associated reductions in muscle force and cardiorespiratory fitness in male than female mice. Funded by NIH R15AR060469.
capnia and hypoxia-capnia were respectively 44% and 50% higher in WT than in PRKO mice. We conclude that, as previously observed in female mice, mPR contributes to the regulation of breathing in males. The effects of progesterone on apnea in PRKO males are probably related to other types of progesterone receptors, or to alloprognolone, the neuroactive metabolite of progesterone. These results highlight the role of mPR and endogenous progesterone production on respiratory regulation in males. Funded by CIHR (MOP-102715).

14.0 NEUROCONTROL

14.1 THE IMPORTANT ROLE OF NITRIC OXIDE SYNTHESIS IN CONTROLLING MITOCHONDRIAL RESPIRATION OF LARGE CEREBRAL ARTERIES IN FEMALE AND MALE RATS

Bodiya Rufatu1, Somritta Dutta1, Prasad Katukam1, and David Busija1
Pharmacology, Tulane Univ., 1430 Tulane Ave., SL6683, New Orleans, LA, 70112.

We have found that mitochondrial oxygen consumption (OCR) is substantially greater in large cerebral arteries in female compared to male rats. However, the underlying mechanisms underlying this sex-based difference have never been fully determined in intact cerebral arteries. Due to higher nitric oxide synthase (NOS) levels in female compared to male cerebral arteries, we tested the hypothesis that differences in NOS signaling mechanisms contribute to sex-based differences in mitochondrial respiration. The Seahorse XFe24 analyzer was used to examine the mitochondrial OCR (pM/min/µg protein) in isolated, large cerebral arteries (middle cerebral artery, circle of Willis, and basilar artery) from male and female Sprague Dawley rats in the absence and presence of the NOS inhibitor L-NAME. Western blots were used to determine both phosphorylated and total endothelial (eNOS) and neuronal NOS (nNOS). The components of mitochondrial respiration in arteries in the absence of L-NAME (vehicle) normalized to protein levels (pM/min/µg protein) including basal respiration (96.9±15.2), ATP production (33±5.3), proton leak (63.6±10.5), maximal respiration (147.2±21.6), and spare respiratory capacity (50.4±8.4) were significantly (p<0.05) elevated in females compared with males (36.3±8.5, 15.1±4, 21.2±4.6, 62.8±16.2, 7±3, respectively). Treatment with 100 µM L-NAME resulted in an increase over vehicle values in the OCR of both groups which was significant for all components of mitochondrial respiration in the male group: basal respiration (98.7±8.8), ATP production (48.6±8.6), proton leak (43.2±11.7), maximal respiration (117.7±16.7), and spare capacity (85.9±9.7). However, L-NAME treatment in the female group caused a significant increase only in maximal respiration and spare capacity (224.3±25.8 and 125.6±20.2, respectively) compared with the vehicle. The ratios of phosphorylated eNOS and total eNOS and phosphorylated nNOS and total nNOS were significantly higher in the female (2.2±0.6, 1.2±0.2, respectively) compared with the males (0.88±0.2, 0.5±0.2, respectively). Thus, NOS inhibition enhanced mitochondrial respiration in cerebral arteries from female and male rats but the relative effects of NOS inhibition were much greater in male than female arteries. Our findings support the concept that sex differences in mitochondrial respiration in cerebral arteries are in part due to involvement of NOS signaling pathways.

14.2 SEX DIFFERENCES IN THE CEREBRAL VASCULAR FUNCTION AND K CHANNEL ROLE

Malikarjuna Pabbidi1
1Pharmacology, UMMC, N. State St., Jackson, MS, 32921.

Cerebrovascular incidence rate is lower in adult females compared to adult males but the role of vascular function and K channel is not clear. Using a combination of vascular and electrophysiological approaches we explored the hypothesis that “sex differences in the cerebral vascular function in adult Sprague Dawley (SD) rats is associated with differential K channel function in the vascular smooth muscle cells (VSMCs)”. The diameter of female middle cerebral arteries (MCAs) increased with increase in the lumen pressure from 40 to 140mmHg in 20mmHg steps, whereas the diameter decreased in male MCAs (% change in diameter from 40 to 140mmHg: Females 16±8, Males -25±4, p<0.05, n=5-8). Female MCAs have ~1.76 fold lower diameter at 40mmHg compared to age matched males in the presence of calcium (Females 81±5, Males 143±13 µm, n=5-8). In contrast, passive dilation was similar (calcium, 2mM EGTA) (Females: 168±12, Males 167±10 µm, n=6). Percent myogenic tone (%MT) (calculated from active and passive diameters) is ~3-4 fold higher in females compared to their male counterparts (%MT at 40mm Hg: Females 51±6, Males -25±5, n=5-8, p<0.05). Endothelium-dependent (Sodium nitro prusside (SNP) relaxation is ~2.3 fold higher in female MCA compared to males (1µM SNP: Females 88±10%, Males 39±5%, n=3-5, p<0.05). Spontaneous transient outward currents (STOC) that represent BK channel function are ~1.7 fold higher in VSMCs isolated from female SD rats compared to males (pA: Females 90±6, Males 53±5, n=5, p<0.05). In contrast, the mean amplitude of transient spontaneous hyperpolarization’s (TSHs) that also represent BK channel function in membrane potential were ~0.8 fold lower in the female SD rats compared to males (mV: Females -22±3, Males -27±3, n=4). Together these results suggest that female MCAs may have higher myogenic tone but exhibit an attenuated pressure-mediated myogenic response compared to males. Higher BK channel function in VSMCs of adult female rats may contribute to the attenuated myogenic response and participate in the endothelium-independent exaggerated vasorelaxation. In conclusion, these results may identify a mechanism with which women in adult hood are protected from cerebrovascular incidences compared to males due to their greater vasodilator capacity that is associated with higher BK channel function. Supported by AHA SDG (1SDG1400006) to Malikarjuna R. Pabbidi.

14.3 CHARACTERIZING THE GENDER DIFFERENCES OF MULTIDRUG-RESISTANCE PEPTIDE (MRP) TRANSPORTER EXPRESSION IN MOUSE BLOOD-BRAIN INTERFACES

Katrina Flores1, Larry Renfro1, and Jose Manautou2

The choroid plexus (CP) epithelium and the capillary endothelium (blood brain barrier, BBB) are blood-brain interfaces with transporters that play important roles in clearing the brain of unwanted substances and preventing the entrance of potentially harmful material into the brain. Previous research has shown gender-specific patterns of the multidrug resistance peptide (MRP) efflux transporters, part of the ATP-Binding cassette (ABC) gene family. This is best documented in liver and kidney, where Mrp1, Mrp3 and Mrp4 have higher expression in females and Mrp5 and breast cancer resistance protein (BCrp/ ABCG2), have higher expression in males. However, little is known about the Mrp gender differences and their function in the brain. The aim of this study was to examine differences in mRNA and protein expression for ABC transporters in the brain and CP of naive wild type (WT) male and female C57 mice. We hypothesized that renal and hepatic gender-specific patterns of these transporters would also be present in the blood brain interfaces, mRNA and protein levels were measured by quantitative polymerase chain reaction (qPCR) and western blotting, respectively. Immunoblot analysis on CP and brain showed that Mrp4, Mrp6 and Bcrp are expressed in a gender specific pattern, and their expression correlates with the expression in the kidneys, supporting our hypothesis. In contrast, Mrp1 and Mrp2 expression had no gender pattern. Our findings indicate for the first time that significant differences in expression of these transporters at the blood-brain interfaces exist between male and female. These results will be helpful for understanding the physiological roles of individual transporters at both the blood-CSF barrier (CP) and BBB. Physiological barriers are known to influence many pharmacokinetic processes. Therefore, it is important to determine how gender can affect transport, metabolism and drug distribution. (Supported by NSF and NIH).

14.4 SEX AND GENOTYPE DIFFERENCES TO EPINEPHRINE INFUSIONS IN HUMANS

Andy Eugene and Michael Joyner1
1Clinical Pharmacology/Anesthesiology Res., Mayo Clinic, Gonda 19, 200 First St. SW., Rochester, MN, 55905, 2Anesthesiology, Mayo Clinic, 200 First St. SW., Rochester, MN, 55905.

Objective: We sought to identify any differences relative to gender and/or genotype on the cardiovascular responses to exogenous infusions of low dose epinephrine (5ng/kg/min). Methods: Subjects: Ten males (mean ± SD: age=27.8±6.6, height=178.5±8.0cm, weight=83.9±12.4kg, BMI=26.3±2.9kg/m2, BSA=2.0±0.2) and fourteen females (mean ± SD: age=26.3±5.9, height=164.3±7.0cm, weight=60.8±6.2kg, BMI=22.5±2.1kg/m2, BSA=1.7±0.1) were studied. Three males were homozygous for Arginine (Arg/Arg) and 7 males were homozygous for Glycine (Gly/Gly) at position 16. In the female cohort, eight females were Arg/Arg and six females were Gly/Gly, at position 16. Procedure: A 1-hour epinephrine infusion was started at 5ng/kg/min administered. BP was measured using an arterial catheter and HR via EKG. Stroke volume and Cardiac output were estimated via Modelflow and TPR was calculated. Plasma samples were collected at time: -10, 0, 30, 45, 60, 75, 90, and 120 minutes and catecholamines measured using HPLC. Statistics: ANOVA with repeated measures was performed controlling for both gender and genotype during the epinephrine infusion at time(s): 0, 30, 45, and 60 minutes. All data were analyzed using the R software package with significance set if P was <0.05.

Results: At baseline, mean values for MAP, HR, CO, SV, and TPR differed between sexes and genotype. At 30-minutes, mean values for MAP, HR, CO, and SV differed by sex as well as genotype. Significant, sex by genotype interactions were noted for MAP, SV throughout the infusion. Conclusion: Our results indicate that the cardio-
vascular responses to epinephrine infusions are influenced by both sex and β2-adrenergic receptor genotype. These responses may explain why some of the responses to physiological stressors differ by sex and genotype.

Effect of Gender and Genotype on Human Cardiovascular Response

<table>
<thead>
<tr>
<th>Baseline (t=0)</th>
<th>30-min</th>
<th>A Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP (mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>82±7</td>
<td>82±8</td>
</tr>
<tr>
<td>Females</td>
<td>81±9</td>
<td>77±10</td>
</tr>
<tr>
<td>Arg/Arg</td>
<td>79±9</td>
<td>77±12</td>
</tr>
<tr>
<td>Gly/Gly</td>
<td>82±8</td>
<td>81±7</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>60±12</td>
<td>62±11</td>
</tr>
<tr>
<td>Females</td>
<td>70±14</td>
<td>74±11</td>
</tr>
<tr>
<td>Arg/Arg</td>
<td>67±12</td>
<td>70±12</td>
</tr>
<tr>
<td>Gly/Gly</td>
<td>65±15</td>
<td>68±13</td>
</tr>
<tr>
<td>CO (L/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>110.0±25.7</td>
<td>126.7±29.5</td>
</tr>
<tr>
<td>Females</td>
<td>72.3±24.9</td>
<td>73.2±17.4</td>
</tr>
<tr>
<td>Arg/Arg</td>
<td>81.7±27.3</td>
<td>87.4±25.6</td>
</tr>
<tr>
<td>Gly/Gly</td>
<td>96.7±42.8</td>
<td>100.4±39.8</td>
</tr>
<tr>
<td>TFR (dynseccm⁻²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>12.9±1.5</td>
<td>10.9±2.0</td>
</tr>
<tr>
<td>Females</td>
<td>17.4±3.8</td>
<td>14.9±3.0</td>
</tr>
<tr>
<td>Arg/Arg</td>
<td>15.3±2.6</td>
<td>13.5±2.7</td>
</tr>
<tr>
<td>Gly/Gly</td>
<td>15.7±5.2</td>
<td>13.2±3.9</td>
</tr>
</tbody>
</table>

14.5 SEX DIFFERENCES IN THE EFFECT OF HYPOGLYCEMIA ON BAROREFLEX SENSITIVITY IN PATIENTS WITH TYPE 1 DIABETES MELLITUS

Jacqueline Limberg¹, Simmi Dube², Michael Mozer¹, Ananda Basu², Rita Basu¹, and Michael Joyner¹

¹Anesthesia Res., Mayo Clinic, 200 1st St. SW., Rochester, MN, 55905, ²Endocrinology, Mayo Clinic, 200 1st St. SW., Rochester, MN, 55905.

Objective: Patients with type 1 diabetes mellitus (T1DM) exhibit impairments in autonomic function which are worsened with acute hypoglycemia and have been linked to an increased risk of cardiovascular events. Given women with T1DM have increased risk of cardiovascular morbidity and mortality when compared with men, we sought to examine whether sex differences exist in autonomic function during hypoglycemia in patients with T1DM. **Methods:** Thirteen adults with T1DM (6F/7M) completed a single 180-min hyperinsulinemic (2 mL/kg TBW/min), hypoglycemic (~3.3 mmol/L) clamp. Measures of heart rate (electrocardiogram) and blood pressure (finger photoplethysmography) were analyzed at baseline and during the hypoglycemic clamp. The sequence method was used to derive measures of spontaneous cardiac baroreflex sensitivity (sCBRS). **Results:** Heart rate increased during hypoglycemia and the rise was not different between the sexes (p=0.82). The effect of hypoglycemia on systolic blood pressure was sex-specific (Men: +13±6 mmHg; Women: -6±6 mmHg, p=0.05). When compared to euglycemia, male subjects exhibited significant reductions in sCBRS to rising (up-up) blood pressure (p=0.02) during hypoglycemia, whereas no change was observed in female subjects (p=0.23). A change in sCBRS to falling (down-down) blood pressure was not observed in either group during hypoglycemia (p=0.05). **Conclusions:** Changes in autonomic function during hypoglycemia differ between men and women with T1DM. sCBRS to rising blood pressure, a measure of parasympathetic control, is reduced during hypoglycemia in male patients with T1DM and these changes are not observed in women. In contrast, the rise in heart rate during hypoglycemia in women—while similar to that observed in men—appears insufficient to maintain blood pressure, suggesting impaired sympathetic control in women with T1DM. **Funding:** NIH DK090541, NIH HL120570.

14.6 THE EFFECTS OF TESTOSTERONE AND OXIDATIVE STRESS ON NEUROINFLAMMATORY SIGNALING IN DOPAMINE NEURONS

Shalothi Holmes¹, and Rebecca Cunningham¹

¹Pharmacology & Neuroscience, Univ. North Texas Hlth. Sci. Ctr. at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107.

Parkinson’s disease, a progressive neurodegenerative disorder characterized by oxidative stress and neuroinflammation, is distinguished by the loss of dopamine neurons in the nigrostriatal pathway. Interestingly, men have a two-fold prevalence for Parkinson’s disease than women. While the mechanisms underlying this sex difference remain elusive, we propose that the primary male sex hormone, testosterone, is involved. Our previous studies show that under oxidative stress conditions, testosterone increased oxidative stress generation and cell death in dopamine neurons. Oxidative stress can induce neuroinflammation, a prominent mechanism involved in the neurodegeneration of dopamine neurons. Pro-inflammatory mediators, NFκB and COX2, can increase oxidative stress in dopamine neurons and lead to apoptotic cell death. Thus, we hypothesize that under oxidative stress conditions, testosterone will increase COX2 mediated oxidative stress to induce alpha synuclein Lewy bodies and apoptosis in dopamine neurons. To test our hypothesis, we exposed a dopaminergic cell line (N27 cells) to a sublethal concentration of the pro-oxidant, tert-butyl hydrogen peroxide (t-BHP) and assessed the role of testosterone on oxidative stress, cell viability, pro-inflammatory markers and apoptosis. Our results showed that under oxidative stress conditions, testosterone increased COX2 protein expression, alpha synuclein Lewy bodies, and apoptosis in dopamine neurons. Inhibiting COX2 blocked testosterone’s negative effects on oxidative stress generation and apoptosis. Therefore, our results indicate that testosterone may mediate the sex differences observed in Parkinson’s disease by increasing oxidative stress induced neuroinflammation and apoptosis in dopamine neurons.

14.7 DOXORUBICIN REDUCES PROINFLAMMATORY MEDIATOR EXPRESSION IN BRAIN AND PIAL ARTERIES FROM OVARIECTOMIZED FEMALE RATS

Rayna Gonzales¹, Puneet Raman¹, Nirmal Vijayan², Colleen Kerrigan³, Jennifer Echeverria¹, Jared Dickinson², Chad Carroll, Tabea Hale³, and Siddhartha Angadi⁴

Doxorubicin (DOX) is a highly effective chemotherapy agent. Its use is hampered however owing to severe dose-dependent cardiovascular toxicity in cancer survivors. Multiple mechanisms have been implicated in the pathogenesis of DOX cardiotoxicity, one of which involves inflammation mediated by activation of the NFκB/TLR4/COX-2 pathway in the heart. Knowledge regarding the toxic effects of DOX-induced inflammation in other organ systems such as the brain is sparse. Therefore, we explored the inflammatory potential of DOX by assessing TLR4 and COX-2 levels in cortex and pial arteries isolated from ovariectomized (OVX) female Sprague-Dawley rats. We hypothesized that DOX would promote inflammation by increasing COX-2 expression along with expression of its upstream innate immune receptor, TLR4, both of which are under the transcriptional regulation of NFκB. OVX rats were treated with three, bi-weekly, i.p. injections of DOX (4 mg/kg; cumulative dose 12mg/kg) or vehicle (saline) and euthanized 5 days after the last dose. Tissues were isolated, snap frozen, homogenized, and analyzed for COX-2 and TLR4 using standard western blotting. Although COX-2 expression was not significantly different between the sexes, there was a significant increase in cortex and pial arteries isolated from vehicle treated OVX rats when compared to vehicle treated male rats. In contrast, the rise in heart rate during hypoglycemia in women—while similar to that observed in men—appears insufficient to maintain blood pressure, suggesting impaired sympathetic control in women with T1DM.
14.8 CEREBRAL BLOOD FLOW REGULATION IS AFFECTED THROUGHOUT THE MENSTRUAL CYCLE IN YOUNG WOMEN

Michelle Favro1,2, Levy A. Reyes1,2, Apollonia Fon1,2, and Jorje M. Segard1,2

1Pharmacology, Physiology & Neuroscience, Rutgers Biomedical & Health Sci., 65 Bergen St., Newark, NJ, 07107. 2War Related Injury & Illness Study Ctr., Vet Affairs Hlth. Care Sys., 385 Tremont Ave, E. Orange, NJ, 07018.

The objective was to determine if cerebral blood flow regulation is affected throughout the menstrual cycle in young, healthy women with naturally cycling hormones (NOC) compared to women on combined oral contraceptive (OC). Nine (4 NOC and 5 OC) healthy, young women (mean age 20.3 years) were tested during menstruation, the late follicular phase, and the mid-luteal phase. Each visit consisted of a cerebrovascular reactivity test, sit-to-stand tests, and squat-to-stand tests. Beat-by-beat blood pressure, heart rate, end-tidal CO2, and transcranial Doppler ultrasonography of the anterior and middle cerebral arteries were measured for each subject. Results from the sit-to-stand maneuver indicate a significant reduction (p = 0.05) in the cerebral auto regulatory index of the middle cerebral artery during the late follicular phase (NOC: 3.7 ± 0.44; OC: 3.1 ± 0.39) compared to the menstrual phase (NOC: 4.2 ± 0.67; OC: 4.2 ± 0.60), but not a significant effect of oral contraceptives. There was a significant effect of oral contraceptives on both the resting mean arterial pressure (p = 0.029; menstruation NOC: 97.2 ± 4.9 mmHg; OC: 92.7 ± 4.4 mmHg; late follicular: NOC: 70.4 ± 6.2 mmHg; OC: 87.1 ± 5.6 mmHg; late luteal: NOC: 66.1 ± 8.1 mmHg; OC: 93.0 ± 7.2 mmHg) and heart rate (p = 0.027; menstruation NOC: 60.7 ± 4.3 bpm; OC: 74.3 ± 4.3 bpm; late follicular: NOC: 66.4 ± 1.5 bpm; OC: 70.1 ± 1.5 bpm; late luteal: NOC: 65.8 ± 3.5 bpm; OC: 72.8 ± 3.5 bpm), but no effect of menstrual cycle phase. There was not a significant effect of menstrual cycle phase or oral contraceptives on the decrease in mean flow velocity of the middle cerebral artery when going from a sitting to standing position, but there was a trend for a greater drop in steady-state flow velocity when standing in women on oral contraceptives (menstruation: NOC: 0.90 ± 0.43%; OC: -6.7 ± 3.8%; late follicular: NOC: -3.5 ± 3.4%; OC: -5.3 ± 3.0%; late luteal: NOC: -0.35 ± 3.6%; OC: -5.8 ± 3.2%). While more data is necessary to interpret the findings, the preliminary results may indicate reduced cerebral vasodilation in women on oral contraceptives. However, this data is from a small number of young women. Additional participants are needed to support if menstrual cycle phase or oral contraceptive use affects cerebral blood flow regulation in young women. This work was supported by the War Related Illness and Injury Study Center and Dept of Veteran Affairs. This study was conducted in compliance with the Declaration of Helsinki.

15.0 PREGNANCY

15.1 PLACENTAL ISCHEMIA INCREASES SENSITIVITY TO PENTYLENETERAZOL-INDUCED SEIZURES AND CEREBROSPINAL FLUID INFLAMMATION

Junie Warrington1

1Pharmacology & Biophysics, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216.

Eclampsia is diagnosed in preeclamptic patients who develop convulsions and/or unexplained coma during pregnancy or postpartum and accounts for ~13% of maternal deaths worldwide. The mechanisms contributing to the pathophysiology of eclampsia are not known, partly due to the lack of suitable animal models. The aim of this study was to test the hypothesis that placental ischemia, induced by reducing utero-placental blood flow and reducing intrauterine oxygenation, increases sensitivity to pentyleneetrazol, a drug used to induce seizures in animal models. Subcutaneous injections of a cerebrovascular reactivity test, sit-to-stand tests, and squat-to-stand tests. Beat-by-beat blood pressure, heart rate, end-tidal CO2, and transcranial Doppler ultrasonography of the anterior and middle cerebral arteries were measured for each subject. Results from the sit-to-stand maneuver indicate a significant reduction (p = 0.05) in the cerebral auto regulatory index of the middle cerebral artery during the late follicular phase (NOC: 3.7 ± 0.44; OC: 3.1 ± 0.39) compared to the menstrual phase (NOC: 4.2 ± 0.67; OC: 4.2 ± 0.60), but not a significant effect of oral contraceptives. There was a significant effect of oral contraceptives on both the resting mean arterial pressure (p = 0.029; menstruation NOC: 97.2 ± 4.9 mmHg; OC: 92.7 ± 4.4 mmHg; late follicular: NOC: 70.4 ± 6.2 mmHg; OC: 87.1 ± 5.6 mmHg; late luteal: NOC: 66.1 ± 8.1 mmHg; OC: 93.0 ± 7.2 mmHg) and heart rate (p = 0.027; menstruation NOC: 60.7 ± 4.3 bpm; OC: 74.3 ± 4.3 bpm; late follicular: NOC: 66.4 ± 1.5 bpm; OC: 70.1 ± 1.5 bpm; late luteal: NOC: 65.8 ± 3.5 bpm; OC: 72.8 ± 3.5 bpm), but no effect of menstrual cycle phase. There was not a significant effect of menstrual cycle phase or oral contraceptives on the decrease in mean flow velocity of the middle cerebral artery when going from a sitting to standing position, but there was a trend for a greater drop in steady-state flow velocity when standing in women on oral contraceptives (menstruation: NOC: 0.90 ± 0.43%; OC: -6.7 ± 3.8%; late follicular: NOC: -3.5 ± 3.4%; OC: -5.3 ± 3.0%; late luteal: NOC: -0.35 ± 3.6%; OC: -5.8 ± 3.2%). While more data is necessary to interpret the findings, the preliminary results may indicate reduced cerebral vasodilation in women on oral contraceptives. However, this data is from a small number of young women. Additional participants are needed to support if menstrual cycle phase or oral contraceptive use affects cerebral blood flow regulation in young women. This work was supported by the War Related Illness and Injury Study Center and Dept of Veteran Affairs. This study was conducted in compliance with the Declaration of Helsinki.
15.4 THE INCREASED ENDOTHELUM-DEPENDENT VASODILATORY RESPONSE OF HEALTHY PREGNANCY IS ABSENT IN THE PREECLAMPTIC DAHL SALT-SENSITIVE RAT
Ellen Gillie1, Taylor Coleman1, Frank Sandlady2, Joey Grainger2, Michael Garret1, Michael Ryan3, and Jennifer Sass2
Pharmacology & Toxicology, Unv. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216, 1Physiology & Biophysics, Unv. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216.

Preeclampsia is a hypertensive disorder of pregnancy associated with renal injury and endothelial dysfunction. More specifically, in preeclampsia there is an absence of the well-characterized increase in endothelium-dependent vasorelaxation that occurs during normal pregnancy. Previously, our laboratory identified the Dahl salt-sensitive (Dahl S) rat strain as a spontaneous model of preeclampsia exhibiting hypertension and renal injury during late pregnancy; however, it is unknown whether this model also presents with endothelial dysfunction. Thus, in the present study, we hypothesized that the Dahl S rat would also exhibit impaired endothelium-dependent vasodilation during late pregnancy. Uterine vessels were isolated from carotid arteries and third-order mesenteric arteries from pregnant Dahl S rats on gestational days 17-18 and age-matched virgin female rats (n=4/group). Endothelium-dependent vasorelaxation to acetylcholine and endothelium-independent vasorelaxation to the nitric oxide donor sodium nitroprusside were assessed. There was no significant difference in acetylcholine sensitivity (logEC50) in the pregnant rats compared to their virgin controls in carotid arteries (-6.57±0.51 M vs. -6.3±0.13 M, respectively) or mesenteric arteries (-7.32±0.07 M vs. -7.58±0.06 M, respectively). However, the maximum response to acetylcholine (at log4.5 M) was significantly impaired in carotid arteries from pregnant Dahl S rats compared to virgins (85±1% vs 91±1%, p<0.05), with a similar trend observed in the mesenteric arteries (85±10% vs 91±4%, respectively). There were no differences in sensitivity or maximum vasorelaxation to sodium nitroprusside in pregnant or control rats in either vascular bed, indicating no changes in the vascular smooth muscle response to exogenous nitric oxide. These data support our hypothesis that the increased endothelium-dependent vasodilatory response that is characteristic of healthy pregnancy is absent in the Dahl S rat and that this failure of the normal cardiovascular adaptation to pregnancy contributes to the increased blood pressure and preeclamptic phenotype in the Dahl S rat.

15.5 DECREASED UTERINE ARTERY BLOOD FLOW AND ENHANCED MYOGENIC TONE IN RGS2-DEFICIENT MICE
Li He1, Elizabeth Owens1, and Patrick Osei-Owusu1

Uterine artery blood flow is critical to maintaining uteroplacental perfusion for delivery of nutrients and oxygen to the fetus during pregnancy. Impaired uterine artery blood flow is implicated in several pregnancy complications including fetal growth restriction, small for gestational age, and preeclampsia. The etiology of abnormal uterine artery blood flow is not known. Here we determined whether the loss of RGS2, a GTPase activating protein for Gq/11 and Gi/o class G proteins that regulates vascular smooth muscle tone, affects uterine artery blood flow during pregnancy. We used Doppler ultrasoundography to assess uterine artery blood flow prior to and at three stages of gestation in normoglycemic (WT) and Rgs2 null (Rgs2-/-) mice. Ex vivo video microroscopy was used to examine myogenic tone in pressurized uterine artery segments. We found that baseline uterine artery blood flow velocity was markedly decreased while peak systolic velocity-to-least diastolic velocity ratio (PS/LD; WT: 2.45±0.18 vs. Rgs2-/-: 3.85±0.64, p<0.05), resistive index (RI; WT: 0.58±0.04 vs. Rgs2-/-: 0.71±0.03, p<0.01) and pulsatility index (PI; WT: 0.90±0.06 vs. Rgs2-/-: 1.25±0.11, p<0.05) were all increased in non-pregnant Rgs2-/- mice relative to WT controls. During pregnancy, PS/LD and PI remained elevated and increased between gestational day 15 in Rgs2-/- mice. Examination of uterine artery tone showed augmented myogenic response in both Rgs2-/- and Rgs2+/+ mice, which was reduced to WT level following G/o inactivation with pertussis toxin (PTX). In contrast, PTX had no effect on myogenic response in WT uterine arteries. The data together indicate that RGS2 deficiency decreases uterine artery blood flow by increasing myogenic tone at least partly through prolonged G/o activation. Thus, mutations that decrease vascular RGS2 expression may be a predisposition to decreased uterine blood flow. Targeting G/o signaling therefore might improve uteroplacental underperfusion during pregnancy.

15.6 IMPACT OF OBESITY ON NITRIC OXIDE SYNTHASE (NOS)-MEDIATED REGULATION OF BLOOD PRESSURE DURING PREGNANCY IN RATS
Frank Sandlady1, Ana Pales1, and Joey Grainger1
1Physiology & Biophysics, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216.

Although obesity is a major risk factor for preeclampsia, defined as new-onset hypertension during pregnancy, the mechanisms have yet to be elucidated. It is known that the dependency of blood pressure regulation on NOS is increases during normal pregnancy in lean rats. Whereas the role of NOS to control blood pressure during obese pregnancy is less clear as human studies have shown both reductions and increases in NO bioavailability. Therefore, we examined the impact of obesity on NOS-mediated regulation of blood pressure during pregnancy. MC4R-deficient obese rats (MC4R-/-) and wild-type Wistar Hannover controls (MC4R+/+) were maintained on NIH11 standard chow; mated at 17 weeks old, and supplemented ad libitum in drinking water with the non-selective NOS inhibitor L-Nω-SUP data=listидентифицирован неизвестно. Фондирование: 14POST18970005, HL051971, and 1T32HL105324. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat. The increased endothelium-dependent vasodilatory response of healthy pregnancy is absent in the preeclamptic Dahl salt-sensitive rat.

15.7 AGONISTIC AUTOANTIBODIES TO THE ANGIOTENSIN II TYPE 1 RECEPTOR ENHANCES ANG II INDUCED RENAL VASCULAR SENSITIVITY AND REDUCES RENAL FUNCTION DURING PREGNANCY
Mark Cunningham, Jr.1, Jan Williams1, Gerd Wallukat2, Ralf Dechend2, and Babette LaMarca3
1Pharmacology & Toxicology, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39212, 2HELIOS Clinic, Experimental & Clinical Res. Ctr., Max-Delbrücker Center, Schwabedecher Chaussee 50, Berlin, 13125, Germany.

Preeclamptic women produce agonistic autoantibodies to the Angiotensin II type 1 receptor (AT1-AA) and exhibit increased blood pressure (BP) and vascular sensitivity to angiotensin II (ANG II). Although, together AT1-As and ANGII increase the BP, renal artery resistant index, and vasoconstriction of renal arterioles in pregnant rats; the renal hemodynamics in the presence of the AT1-As during pregnancy has not been examined. Thus the objective of this study was to examine the changes in the glomerular filtration rate (GFR) and renal blood flow (RBF) during pregnancy in the presence of AT1-As and/or ANGII. Methods: Pregnant Sprague Dawley rats were divided into 4 groups: Normal Pregnant (NP, n=6), Pregnant + ANG II (Preg + ANG II, n=6), Pregnant + AT1-AA (Preg + AT1-AA, n=8), and Pregnant + ANG II + AT1-AA (Preg + ANG II + AT1-AA, n=6). On day 13 of pregnancy, rats were implanted with mini-pumps infusing ANG II (50 ng/g/min) and/or AT1-AA (1.40 dlution). On day 19 of pregnancy, rats were subjected to terminal renal function surgeries using FITC labeled Inulin. During the surgery, the
BP was recorded and a transonic flowmeter probe was placed on the left renal artery to measure RBF. **Results:** BP was elevated in all pregnant rats administered ANG II and/or the AT1-AA. Although GFR was reduced, it was not significantly different between Preg + ANG II and Preg + AT1-AA vs. NP rats (13 ±0.24, 1.60 ±0.17 vs. 1.90 ±0.16 ml/min/100g). However, the GFR was further decreased in Preg + ANG II + AT1-AA rats (1.20 ±0.08). No difference was observed with the RBF between Preg + ANG II and Preg + AT1-AA vs NP rats (14.4 ±2.96, 14.4 ±1.48 vs. 15.4 ±1.75 ml/min). RBF was decreased in Preg + ANG II + AT1-AA vs NP rats (7.4 ±1.09 vs 15.4 ±1.75 ml/min). No change in RVR between Preg + ANG II and Preg + AT1-AA vs NP rats (9.7 ±2.69, 8.3 ±0.58 vs 6.4 ±0.77). However, the RVR was drastically increased between Preg + ANG II + AT1-AA vs NP rats (18.4 ±2.91 vs 6.4 ±0.77). **Conclusion:** Together ANG II and AT1-AA drastically decreases renal function by 37%, RBF by 50%, and caused a 3 fold increase in RVR vs NP rats. These data indicate the importance of AT1-AAs to drastically enhance ANG II induced renal vascular sensitivity and reduce renal function during preeclampsia. Research Supported by T32HL105324 and RO1HD067541.

15.8
A NOVEL, MASTER SWITCH FOR OVARIAN CYClicity: THE IMPACT ON CARdIOMETABOLIC HEALTH
Lauren Stien¹, Stacy Mathews¹, Willis Sasser¹, and Gina Yosten¹
¹Pharmacology & Physiology, St. Louis Univ., 1402 S. Grand Blvd., St. Louis, MO, 63104
The increased risk for cardiovascular disease that follows menopause may reflect not only the cessation of ovarian hormone production but also previously unidentified, sex-specific factors whose presence or absence precipitates CVD. We identified a novel endogenous peptide called Phoenixin (PNX), which is robustly expressed in the hypothalamus where mRNA levels fluctuate during the estrous cycle. This plus our previous observation that knockdown of endogenous PNX levels using siRNA decreased the appearance of the next ovulatory event suggests a CNS site of action. PNX’s ability to control GnRH release and identify its cognate receptor. Diestrous, female rats were administered saline, 1nmol, or 3nmol PNX i.c.v. for determination of plasma LH levels. We observed a significant dose-related increase in plasma LH levels suggesting that even under low estrogen conditions, PNX acts in CNS to acti-vate the hypothalamo-pituitary-gonadal axis. We identified the orphan G-protein coupled receptor GPR173 as our top PNX receptor candidate. In a mouse pituitary cell line pretreated with a control siRNA, cFos mRNA expression increased upon PNX exposure. However, cells pretreated with siRNA against GPR173 exhibited an abrogated PNX response. This provided evidence of a potential interaction of PNX with GPR173 in vitro. We then tested whether siRNA mediated compromise of central GPR173 expression would also result in impaired estrous cyclicity. Female rats were treated i.c.v. with either siRNA against GPR173 or GFP as a control followed by daily monitoring of vaginal cytology. Rats administered GFP siRNA displayed the typical 4-day cycle, but animals given GPR173 siRNA exhibited a significant delay in the appearance of estrous with an average cycle length of 9 days. Taken together, these findings are the first to identify an interaction between GPR173 and PNX to regulate estrous cyclicity and therefore a potentially new target for treating ovarian dysfunction. Age of onset and age of cessation of menstral cycles are both correlated with increased risk of cardiovascular and metabolic disease. We hypothesize that PNX, by determining the onset and perhaps even cessation of ovulatory cycles may be an important target for the treatment of sex-specific disease risk, particularly under PNX, by determining the onset and perhaps even cessation of ovulatory cycles may be an important target for the treatment of sex-specific disease risk, particularly under

15.9
BLOOD PRESSURE RESPONSES TO ISOmetric HandGrip EXERCISE AND POST-EXERCISE ISCHEMIA IN WOMEN WITH A HISTORY OF HYPERTENsIVE PREGNANCY
Sushant Ranadive¹, Ronce Harvey¹, Michael Joyner¹, Virginia Miller²,³, and Jill Barnes⁴
¹Anesthesiology, Mayo Clinic, St. Mary’s Hosp., 1216 Second St. SW., Joseph-4 184, Rochester, MN, 55902, Surgery, Mayo Clinic, Med. Sci. Bldg. 4-20, Rochester, MN, 55902, ²Physiology & Biomedical Engineering, Mayo Clinic, Med. Sci. Bldg. 4-20, Rochester, MN, 55902, ³Kinesiology, Univ. of Wisconsin, Madison, 44325, ⁴Mathematics & Sci., Walsh Univ., 2020 E. Maple St., N. Canton, OH, 44720. Additionaly, dedicated uterine arteries (~ < 300 µm) are harvested for study in an isobaric arteriograph. Uterine arteries from untreated RUPP dams (n=8) displayed increased constriction to intraluminal pressure increases compared to SHAM pregnant rats (n=7; p<0.05). VEGFR 2 LTP nanoparticle injection normalized the myogenic response in RUPP uterine arteries (p<0.05) so that the responses are similar to responses in arteries from SHAM rats. Maternal mean arterial pressure (MAP) is also normalized by VEGFR 2 LTP injection. MAP is reduced from 99.0 mm Hg ±4.6 (RUPP) compared to 71.8±4.5 mmHg in injected RUPP dams (p<0.05). Finally, injection of VEGFR 2 LTP nanoparticles significantly increased fetal weights in RUPP to 4.8 ±0.2g (RUPP) and 2.85 ±0.5g in non-medicated HTNP women (p<0.05). Changes in systolic or mean arterial BP were not different between groups (p<0.05). **Conclusions:** These results identify differences in BP responses to physical stressors in women with a history of HTNP that are currently hypertensive versus normotensive. These data suggest the presence of two distinct phenotypes in women with a history of HTNP, which may be identified by the presence or absence of an altered muscle chemoreflex response along with an increased peripheral vascular resistance. Further investigation is needed to evaluate if these changes can be primarily attributed to a history of HTN pregnancy and how this affects overall cardiovascular risk. Funding: NIA 1R01AG044170-01, CTSA UL1 TR000135, HL 118154, HLS3947.

15.10
Up-regulation of VEGF receptor 2 improves uterine artery myogenic response and maternal hypertension altered by uterine perfusion pressure reductions
Brittany Baker¹, Rolando Barrera¹, Douglas Crowder², John Rebo³, Yang Yun¹, and Jacqueline Nowak
¹Integrative Biosciences Program, Univ. of Akron, 302 Buchtel Mall, Akron, OH, 44325, ²Biomedical Engineering, University of Akron, 302 Buchtel Mall, Akron, OH, 44325, ³Molecular Physiology & Biophysics, Univ. of Iowa, 51 Newton Rd., Iowa City, IA, 52242, ⁴Mathematics & Sci., Walsh Univ., 2020 E. Maple St., N. Canton, OH, 44720.
Conclusion: uterine injection of LTP nanoparticles with DNA plasmid significantly increased fetal weights in RUPP to 4.8 ±0.72g vs. 2.85 ± 0.5g; VEGFR 2 LTP nanoparticles increased GFR by 9.5 ±3.7 ml/min vs. 5.9 ±1.7 ml/min (p<0.05). These comparisons suggest a beneficial effect of VEGF receptor 2 gene delivery in RUPP animals. These data suggest a novel gene therapy to treat preeclamptic mothers and emphasize the importance of VEGFR2 receptor.

15.11
EFFECTS OF HIGH-SUCROSE DIET ON BLOOD PRESSure REGuLATION DURING PREGNANCY IN RATS
Frank Spradley¹, Ana Pales², and Joey Granger³
¹Integrative Biosciences Program, Univ. of Akron, 302 Buchtel Mall, Akron, OH, 44325, ²Physiology & Biomedical Engineering, University of Akron, 302 Buchtel Mall, Akron, OH, 44325, ³Molecular Physiology & Biophysics, Univ. of Iowa, 51 Newton Rd., Iowa City, IA, 52242, ⁴Mathematics & Sci., Walsh Univ., 2020 E. Maple St., N. Canton, OH, 44720.
Conclusion: uterine injection of LTP nanoparticles with DNA plasmid significantly increased fetal weights in RUPP to 4.8 ±0.72g vs. 2.85 ± 0.5g; VEGFR 2 LTP nanoparticles increased GFR by 9.5 ±3.7 ml/min vs. 5.9 ±1.7 ml/min (p<0.05). These comparisons suggest a beneficial effect of VEGF receptor 2 gene delivery in RUPP animals. These data suggest a novel gene therapy to treat preeclamptic mothers and emphasize the importance of VEGFR2 receptor.
While obesity increases the risk for developing preeclampsia, which is a new-onset hypertension during pregnancy, the mechanisms are unclear. Although adverse dieters such as high sucrose are thought to contribute to hypertension, human and animal studies have failed to demonstrate that high sucrose affects blood pressure during pregnancy. This could be due to the lack of high sucrose to evoke hypertension. However, it is unknown whether body weight, for example, segregation of lower vs. higher body weights even within the normal weight range, is important to consider when examining blood pressure during high sucrose feeding in pregnancy. Therefore, we tested the hypothesis that higher vs. lower body weight status during a high-sucrose diet is accompanied by high blood pressure in pregnancy. Female Wistar hamster rats were started on a high-sucrose diet (HSD; 65% sucrose) or a controlled normal-sucrose diet (NSD; 5% sucrose) at 6 weeks old; time-matched-pregnant rats generated at 17 weeks old; followed by assessment of mean arterial blood pressure (MAP) and pregnancy weights at gestational day (GD)19 while being maintained on respective diets. Maternal body weights at GD19 were segregated as lower (L) or higher (H) than the median for respective NSD (370g) and HSD (348g) groups. This resulted in 4 experimental groups: NSD-L (N=5), NSD-H (N=5), HSD-L (N=4) and HSD-H (N=5). Maternal body weights were greater (P=0.0002) in NSD-H and HSD-H (378±3 vs. 355±4g, respectively) over the NSD-L and HSD-L groups (345±7 vs. 325±12g, respectively). Body weight was greater in NSD-H than HSD-P (P=0.05). Visceral adipose tissue mass was greater (P=0.002) in the NSD-H and HSD-H groups (82±0.4 vs. 66±0.7g, respectively) than NSD-L and HSD-L groups (59.2±2 vs. 47.7±0.8g, respectively). Most interestingly, MAP was greatest (P<0.05) in HSD-H (120±2mmHg) over NSD-L and HSD-L groups (345±7 vs. 325±12g, respectively).

These data suggest that the hypertensive response to HSD during pregnancy maybe dependent on the presence of increased body weight and visceral adiposity. In conclusion, pregnant women with higher body weight and visceral adiposity combined with an adverse diet may predict those most likely to develop hypertension during pregnancy.

15.12 MECHANISMS OF RENAL AND COLONIC POTASSIUM RETENTION DURING LATE PREGNANCY
Crystal West1, Paul Wellling2, Thomas DuBose3, Chris Bavis4, Michelle Gurnez3

1Med., Georgetown Univ., 4000 Reservoir Rd., NW., Washington, DC, 20057

The fetus requires a large amount of potassium (K+) for normal development. To accommodate this need the normal pregnant rat accumulates considerable K+ over the course of gestation, most of which is retained during late pregnancy. This gestational K+ retention is essential for fetal development but the mechanism is unknown. The purpose of this study was to examine how renal and colonic K+ handling change in pregnancy in the setting of high circulating aldosterone and enhanced sodium reabsorption. We measured dietary K+ intake and urinary K+ excretion. K+ intake increased in MP and LP vs V (4.6±0.1, 5.2±0.1 vs 3.3±0.1 mmol/24h, P<0.05), while renal K+ excretion also rose (4.3±0.1, 4.6±0.1 vs 3.0±0.2 mmol/24h, P<0.05). We also measured the mRNA expression of BK, ROMK, H+K+ - ATPase type 1 (HK1), H+K+ - ATPase type 2 (HK2), and Na+ - K+ - ATPase in the renal cortex, outer medulla, and inner medulla of virgin (V, n=6), mid pregnant (MP, n=6), and late pregnant (LP, n=6) rats using quantitative real-time PCR. We found an increase in HK1 in the outer medulla in MP rats vs V and increased HK2 expression in both cortex and outer medulla of LP rats vs V. Furthermore, ROMK expression decreased in the inner medulla of MP and LP rats compared to V. BK mRNA increased in outer medulla and decreased in inner medulla at MP, and increased in cortex at LP. The expression level of the other genes tested did not differ with pregnancy stage. Although ROMK mRNA was unchanged in the CTX and decreased in the IM, the abundance detected by immunofluorescence was increased in both MP and LP vs V in the cortex and not different in the medulla. In the distal colon we found a fall in BK mRNA at MP, an increase in the HKA2 mRNA at LP and an increase in distal colon HKA2 protein abundance whereas HKA2, HKA1 protein abundance was too low to be detected in kidney, even in LP rats. During pregnancy the kidney is receiving mixed signals with respect to K+ handling, with the changes in apical sodium channels/transporters and ROMK promoting K+ secretion, and the changes in HK1 and HKA2 promoting K+ retention. Therefore the K+ retention of pregnancy is likely due both to increased collecting duct K+ reabsorption (via increased HKA1/HKA2) offsetting the increased K+ secretion, as well as increased colonic reabsorption via HKA2. Future studies will determine the signaling pathways involved in these mechanisms.

15.13 IMPAIRED FLOW-MEDIATED DILATION BEFORE, DURING AND AFTER PREECLAMPSIA: A SYSTEMATIC REVIEW AND META-ANALYSIS
Tracey Weissgerber1, Natsa Mile2*, Jelena Mile-Juzovic1*, and Garvio Versa1
1Div. of Nephrology & Hypertension, Mayo Clinic, 200 First St., SW, Rochester, MN, 55905; 2Div. of Nephrology & Hypertension, Dept. of Biostatistics, Mayo Clinic, 201 First St., SW, Rochester, MN, 55905; 3Dept. of Biostatistics, Univ. of Belgrade, Sabotica 15, Belgrade, Yugoslavia

Background: Endothelial dysfunction is believed to play a critical role in preeclampsia, however it is unclear whether this dysfunction precedes the pregnancy or is caused by early pathophysiological events. It is also unclear whether vascular dysfunction resolves post-partum, or may be one mechanism linking preeclampsia with future cardiovascular disease. Objective: to determine whether women with preeclampsia, examined before, during and after a preeclamptic pregnancy, have worse vascular function compared to women who did not have preeclampsia. Vascular dysfunction was assessed by flow-mediated dilation (FMD). Methods and Results: We performed a systematic review and meta-analysis of studies examining FMD before, during and after preeclampsia published before January 27, 2015. Differences in FMD were evaluated by standardized mean differences. We searched 595 abstracts identified through PubMed, EMBASE, and Web of Science. 32 studies were eligible for the meta-analysis. When compared to women who did not have preeclampsia, women who had preeclampsia had lower FMD prior to the development of preeclampsia (~20-29 weeks gestation), at the time of preeclampsia, and for three years post-partum. The estimated magnitude of the effect ranged between 0.5 and 3 standard deviations. Although statistically significant, the estimated effects had wide confidence intervals due to high heterogeneity. These differences were no longer evident by 10 years post-partum. Conclusions: Compared to women who do not develop preeclampsia, women who develop preeclampsia have worse vascular function from 20 weeks gestation until 3 years post-partum. This meta-analysis may over-estimate the effects of preeclampsia, as the small, observational studies included have a high risk of bias.

16.0 DEVELOPMENTAL PROGRAMMING

16.1 VENDOR-SPECIFIC EFFECT ON SEX DIFFERENCES IN THE DEVELOPMENTAL PROGRAMMING OF BLOOD PRESSURE IN THE SPRAGUE DAWLEY RAT
John Henry Dasinger1, Sutira Intarpad1, Miles Backstrom1, and Barbara Alexander1
1Physiology & Biophysics, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216

Our laboratory uses a well-established model of intrauterine growth restriction (IUGR) induced by placental insufficiency that programs a sex difference in blood pressure in the Sprague-Dawley rat. IUGR is induced by reduced uterine perfusion (RUP) initiated at day 14 of gestation in timed pregnant rats purchased from Harlan. Previously we reported that male IUGR rats exhibit hypertension at 16 weeks of age associated with a two-fold increase in testosterone relative to male control from sham operated dams whereas female IUGR rats remain normotensive. Hypertension is abolished by castration suggesting that IUGR programs a testosterone-dependent increase in BP in male IUGR. However, BP is significantly increased following ovariectomy (OVX) in female IUGR implicating estrogen is protective. Thus, these studies indicate that sex hormones play a vital role in BP control in Harlan SD IUGR rats. The aim of this study was to determine if the commercial vendor impacts the developmental programming of BP. Timed pregnant SD rats from Charles River underwent either RUP or sham surgery at day 14 of gestation. Birth weight was significantly reduced in male and female IUGR relative to same-sex controls (P<0.05). At 10 weeks of age animals underwent measure of body composition before and 6 weeks after gonadectomy or sham surgery. Prior to gonadectomy total fat mass did not differ between IUGR and control (Males: 28±3 vs 26±3 g and Females: 19±3 vs 17±3 g; IUGR vs. control, respectively) while CTX had no effect on fat mass in male (data not shown). Baseline BP measured in conscious, chronically instrumented rats at 16 weeks of age did not differ in intact male control relative to intact male IUGR (137±3 vs. 137±3mmHg) or intact female control relative to intact female IUGR (119±5 vs. 123±3mmHg). Testosterone levels were not elevated in male IUGR versus male control; gonadectomy did not alter BP in IUGR rats relative to same-sex intact control (data not shown). Thus, these results suggest
that vendor-specific differences in the SD rat abolish the developmental programming of sex differences in BP and eliminate the effect of testosterone and estrogen on BP control in the IUGR rat. Dasinger: AHA 15PRE2470010; Alexander: HL074927, AHA GRNT19900004, PO1-HL51971, GM104357.

16.2 IS THERE A SEX DIFFERENCE BETWEEN HYPERTENSION RISK AND LOW BIRTH WEIGHT IN HEALTHY YOUNG JAPANESE ADULTS?
Sarina Bao1, Emi Kanno1, Hirotsuru Tanoue1, and Ryoko Mawaya1
1Hibi Sci., Tokoiku Univ. Grad. Sch. of Med., 2-1 Seiryo-machi, Aobaku, Sendai, Japan, Sendai, 980-8575, Japan.

Low birth weight (LBW) was confirmed as a risk of high blood pressure (BP) in later stages of life. Low-grade inflammation and deterioration of autonomic regulation play an important role in hypertension. However, the association between birth weight and hypertension is poorly understood. We examined this association in healthy young Japanese adults, and investigated whether the relationship between LBW and hypertension risk factors differs between men and women. We measured the BP and heart rate variability at rest and during postural change from a supine to a sitting position in 26 healthy Japanese volunteers aged 18-23 years. Blood cell counts and levels of total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, triglyceride (TG), and high sensitivity C-reactive protein were measured.

Men were taller (p < 0.01), weighed more (p < 0.01), had a higher resting BP (p < 0.001), and had higher TG levels (p < 0.05) and lower HDL-C levels (p < 0.05) compared to women. In men, the HDL-C levels were lower in the LBW group compared to the normal birth weight (NBW) group (p < 0.05). In contrast, there were no significant differences in women considering any of the hypertension risk factors between the LBW and NBW groups. After the postural change, systolic blood pressure (SBP), diastolic blood pressure, and heart rate showed no significant increases in the LBW, whereas the NBW group had normal responses (p < 0.01). Women displayed an increase in SBP immediately after sitting (p < 0.05) and a decrease in SBP in the sitting position (p < 0.01), although no significant responses were observed in men. Similar to the results of earlier studies, our results showed that healthy young men have lower HDL-C and higher TG levels compared to healthy young women. Our results also show that healthy young men with a LBW have lower HDL-C levels compared to their counterparts with a normal birth weight. In addition, among healthy young Japanese adults, men may be less sensitive to postural changes in BP compared to women. In conclusion, we found that sex differences exist between LBW and hypertension risks in healthy young Japanese adults. This work was supported, in part, by a Grant-in-aid for Scientific Research (B) 25390181 from the Japan Society for the Promotion of Science.

16.3 SEX DIFFERENCES IN HIGH FAT DIET-INDUCED ADIPOCYTE MORPHOLOGY AND FAT DISTRIBUTION DUE TO EARLY LIFE STRESS
Margaret Murphy1, Lauren Schneack2, David Powell2, and Anaia Lorid1
1Pharmacology & Nutritional Sci., Univ. of Kentucky, 900 S. Limestone, 557 C T Wellinghian, Lexington, KY, 40536, Anatomy & Neurobiology, Univ. of Kentucky, Rm. 5-L Whitney Hendrickson, Lexington, KY, 40536.

Epigenetic studies indicate that adults exposed to early life stress (ELS) are at an increased risk of developing cardiometabolic disease. Previously, we have reported that females exposed to maternal separation (MSep), an established behavioral stress model, are glucose intolerant with no differences found in males. The aim of this study was to investigate the effect of ELS on adipocyte morphology and fat distribution. C57BL/6 mice were separated for 4 hours/day from postnatal day 2-5 and 8 hours/day from PND6 to 16 with early weaning at day 17. Normally reared litters were divided into two groups: control and sleep restricted. Sleep restriction was performed daily for 16 weeks.

Nonestrus animals were used as control (C). Upon weaning, mice were placed on a low-fat diet (LFD, 10% kcal from fat; n=6-10) or high-fat diet (HFD, 60% kcal from fat, n=10) for 16 weeks. Although male MSep mice showed significantly elevated fat mass through week 12, no differences were observed at week 16 compared to C (22.4± 0.8 vs. 20.1 ± 0.8 g, p<0.05). Kidneys were isolated from 24 week old control and IUGR offspring after sacrifice. These data suggest that the mechanisms by which ELS affects fat partitioning and adipocyte biology as well as cholesterol levels are sex-specific.

16.4 SPHINGOSINE-1-PHOSPHATE RECEPTOR TYPE 3 PLAYS A ROLE IN THE ETIOLOGY OF HIGH BLOOD PRESSURE PROGRAMMED BY INTRAUTERINE GROWTH RESTRICTION IN THE MALE BUT NOT THE FEMALE MOUSE
Sarina Intapad1
1Physiology & Biophysics, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 34216.

Intrauterine growth restriction (IUGR) is a risk factor for hypertension and cardiovascular (CV) disease in later life, but the underlying mechanisms remain unclear. The bioactive sphingolipid metabolite sphingosine-1-phosphate (SIP) is critically involved in CV development in the fetus, and plays a significant role in the regulation of CV health in adulthood. SIP receptor (SIPR) type 1, 2 and 3 are widely expressed in CV system and SIPR3 is involved in the control of blood pressure (BP). We previously reported in IUGR induced by reduced uterine perfusion (RUP) in the mouse programa significant increase in BP in male IUGR mice but not in female IUGR mice as compared to same-sex control counterparts. Hypertension in male IUGR is attenuated by the SIP receptors agonist. Yet, whether regulation of SIPR3 expression is sex-specific following IUGR is unknown. In the present study we tested the hypothesis that SIPR3 programs sex-specific renal expression of SIPR3 in IUGR mice. C57Bl/6 mice underwent sham or RUP at day 13 of gestation with delivery at full term. IUGR offspring (from RUP dams) had a lower birth weight than control (P<0.05). Kidneys were isolated from 24 week old control and IUGR offspring after sacrifice. Male IUGR offspring had a significantly higher BP compared to male control via carotid catheter in the conscious state (control: 112±2, IUGR: 125±3 mmHg; N=7, P<0.05). MAP did not differ between female control and female IUGR (control: 113±2, IUGR: 117±2 mmHg; N=5). Kidney weight per body weight was not different between control versus IUGR same-sex counterparts. Renal SIPR3 gene expression levels were increased (2.5 fold vs. control, N=4, P < 0.05) whereas SIPR3 protein levels were decreased (0.75 fold vs. control, N=4, P < 0.05) in male IUGR. Renal gene and protein SIPR3 expression levels were not different between female control and female IUGR. Together our data suggest that IUGR programs a sex-specific alteration in renal SIPR3 expression which may contribute to an increase in BP programmed only in male IUGR but not female IUGR mice Thus, SIPR3 signaling is a potential putative mechanism underlying the sex-specific hypertension of IUGR mouse offspring. Dr. Intapad is supported by funding from NIH R01DK104357.

16.5 REDUCED SLEEP TIME DURING PREGNANCY EFFECTS ON RENAL MORPHOLOGY AND FUNCTION OF FEMALE OFFSPRING
Guonar G. Gomaa1, Roserio Arneri1, and Sergio Tufik1
1Physiology/Psychobiology, UNIFESP/EPM, Rua Botucatu, 862, São Paulo, 04023-900, Brazil.

The shortening of sleeping time has become common in modern society. This alteration has been associated to several changes such as reduced glucose tolerance, increased blood pressure, and changes in hormonal pathways. Considering that changes in maternal environment may result in changes in the offspring, as shown in male offspring from different models of fetal programming, the aim of this study was to evaluate renal morphology and function of female offspring from rats sleep restricted during the last week of pregnancy. Methods: After confirmation of pregnancy, Wistar rats were divided into two groups: control and sleep restricted. Sleep restriction was performed between 14th and 20th day of pregnancy (20 hours/day). After birth, offspring was designated as C (control) and SR (sleep restricted). At two months, half of the mice were subjected to ovariectomy and the others to sham surgery. The groups were then designated Sham (CS and SRS) or ovariectomized (CO and SRO) and studied at 8 months of age. The parameters analyzed were: systolic blood pressure (BP), creatinine clearance (Ccr), sodium excretion (Ena+), glomerular area (GA), number of glomeruli per field (NG), kidney cross-sectional area (KA) and kidney mass (KM). The results are shown as mean± SEM and number of measurements between parenthesis; Anova, p <0.05. The SR groups presented increased BP [CS: 125±0.7 (17); CO: 125.0±3.7 mmHg; N=7, P<0.05]. MAP did not differ between female control and female IUGR (control: 113±2, IUGR: 117±2 mmHg; N=5). Kidney weight per body weight was not different between control versus IUGR same-sex counterparts. Renal SIPR3 gene expression levels were increased (2.5 fold vs. control, N=4, P < 0.05) whereas SIPR3 protein levels were decreased (0.75 fold vs. control, N=4, P < 0.05) in male IUGR. Renal gene and protein SIPR3 expression levels were not different between female control and female IUGR. Together our data suggest that IUGR programs a sex-specific alteration in renal SIPR3 expression which may contribute to an increase in BP programmed only in male IUGR but not female IUGR mice Thus, SIPR3 signaling is a potential putative mechanism underlying the sex-specific hypertension of IUGR mouse offspring. Dr. Intapad is supported by funding from NIH R01DK104357.
RT-PCR analysis of the lamina terminalis and the paraventricular nucleus tissues either hypertensive (enhanced hypertensive response to sc ANG II (120 ng/kg/min, beginning at 10 weeks of age, male offspring of hypertensive dams showed an increase in heart rate (HR) were measured in dams and their offspring by telemetry. When tested for sure (BP) in adult offspring, and whether there are sex differences. Aortic BP and reactivity to K+ than control females. The different effects of PH in male and female rats may result from different expression and/or activity of K+ channels. Superoxide anion production in macrophages is increased in male, but not female, newborn rats exposed to DEX. Taken together, these findings reveal sex-specific differences in the prenatal programming of stress-induced hypertension and further support a role for elevated glucocorticoids in development as an origin for cardiovascular disease states in females. Funding: NIH 5 P50 MH082679 and AZ Biomedical Research Commission ADHS14-082990.

16.7 AGING AND MENOPAUSE

17.1 PREHYPERTENSION AND ENDOTHELIAL FIBRINOLYTIC FUNCTION IN MIDDLE-AGED WOMEN

Kyle Diehl1, Tyler Hammern1, Brian Weil2, Jared Greiner1, Brian Staffler1, and Christopher DeSouza3

1Integrative Physiology, Univ. of Colorado Boulder, 354 UCB, Boulder, CO, 80309. Prehypertension (systolic blood pressure: 120-139 mmHg and/or diastolic blood pressure: 80-89 mmHg) is prevalent in ~30% of US adults and is associated with increased atherothrombotic vascular disease risk. We recently demonstrated that the capacity of the endothelium to release tissue-type plasminogen activator (t-PA) is markedly decreased in middle-aged men with prehypertension. Endothelial t-PA release is the primary endogenous defense mechanism against thrombus formation. Interestingly, the capacity of the endothelium to release t-PA has been shown to be significantly higher in middle-aged women compared with men, conferring greater cardiovascular protection. It is currently unknown whether prehypertension is associated with diminished endothelial t-PA release in women. Accordingly, we tested the hypothesis that, similar to men, blood pressure in the prehypertensive range is associated with reduced endothelial t-PA release in middle-aged women. Thirty-four sedentary, non-obese, post-menopausal, middle-aged women were studied: 17 normotensive with reduced endothelial t-PA release in women. Accordingly, we tested the hypothesis that, similar to men, blood pressure in the prehypertensive range is associated with reduced endothelial t-PA release in middle-aged women. Thirty-four sedentary, non-obese, post-menopausal, middle-aged women were studied: 17 normotensive with reduced endothelial t-PA release in women. Accordingly, we tested the hypothesis that, similar to men, blood pressure in the prehypertensive range is associated with reduced endothelial t-PA release in middle-aged women. Thirty-four sedentary, non-obese, post-menopausal, middle-aged women were studied: 17 normotensive with reduced endothelial t-PA release in women. Accordingly, we tested the hypothesis that, similar to men, blood pressure in the prehypertensive range is associated with reduced endothelial t-PA release in middle-aged women. Thirty-four sedentary, non-obese, post-menopausal, middle-aged women were studied: 17 normotensive with reduced endothelial t-PA release in women. Accordingly, we tested the hypothesis that, similar to men, blood pressure in the prehypertensive range is associated with reduced endothelial t-PA release in middle-aged women. Thirty-four sedentary, non-obese, post-menopausal, middle-aged women were studied: 17 normotensive with reduced endothelial t-PA release in women. Accordingly, we tested the hypothesis that, similar to men, blood pressure in the prehypertensive range is associated with reduced endothelial t-PA release in middle-aged women.
larly in the normotensive (from 0.6±0.7 to 56.9±7.6 ng/100 mL tissue/min) and prehypertensive (from 0.6±1.1 to 54.9±8.5 ng/mL tissue/min) groups to incremental doses of BK. In fact, total t-P release (area under the BK curve) was almost identical between the normotensive (284±46 ng/100 mL tissue) and prehypertensive (273±46 ng/100 ml tissue) groups. There was no effect of SNP on t-P release in either group. In summary, contrary to our hypothesis, prehypertension does not adversely influence endothelial t-P release in middle-aged women. Impaired fibrinolytic function does not appear to contribute to the increase in vascular risk with prehypertension in middle-aged women. Our findings suggest that mechanisms underly prehypertension-related vascular risk may differ between women and men.

17.2 GENDER DIFFERENCES IN CIRCULATING MICROPARTICLES IN MIDDLE-AGED ADULTS

Tyler Baranen1,1, Jamie Hijrains2, Caitlin Dow3, Whitney Reisjakis4, Grace Lincenberg1, Jared Greiner1, Brian Stauffer1, and Christopher Desouza1

1Integrative Physiology, Univ. of Colorado, Boulder, Integrative Vascular Biology Lab., Boulder, CO, 80309.

The incidence of coronary heart disease (CHD) and stroke is ~50% higher in men compared with women between the ages of 45 and 65 years. The mechanisms responsible for the gender-related difference in cardiovascular disease risk are not completely understood. We and others have reported profound gender-related differences in vascular endothelial function in middle-aged adults. Clinical interest in circulating microparticles (MPs) has increased due to their putative role in inflammation, vascular health and cardiovascular disease (CVD). MPs are small vesicles (0.1-1 μm) formed by the outward blebbing of the cellular plasma membrane and released into circulation by a variety of cell types. Circulating MPs originating from platelets (PMPs), endothelial cells (EMPs), monocytes (MMPs) and leukocytes (LMPs) are now recognized as biomarkers of vascular injury and are predictive of vascular events. There is currently little understanding of the interplay between gender and circulating MPs. The aim of this study was to determine whether circulating MPs, EMPs, MMPs and LMPs differ in middle-aged men compared with women. If so, this may contribute to gender-related disparity in CVD in middle-aged adults. Thirty healthy, sedentary, non-obese, middle-aged adults were studied: 16 males (age: 57±2 yr; BMI: 24.5±0.7 kg/m²). All women were at least 1 year postmenopausal and not taking hormone replacement therapy. Circulating MPs were measured in platelet free plasma from peripheral blood samples. Cellular lineage was identified by flow cytometry utilizing cellular specific antibodies: PMPs (CD31+/CD42b+), EMPs (CD31+/CD42b-), MMPs (CD14+) and LMPs (CD14-). Circulating MPs were ~200% higher (P<0.05) in females (111±28 μM/L) compared with males (37±8 μM/L). However, there were no significant gender-related differences in circulating EMP (393±66 vs. 388±41 μM/L), MMP (237±53 vs. 260±50 μM/L) or LMP (38±10 vs. 37±9 μM/L) concentrations between the women and men. These results indicate that aside from PMPs, there is no influence of gender on circulating EMPs, MMPs or LMPs in middle-aged adults.

17.3 FOREARM VASCULAR CONDUCTANCE RESPONSES TO TERUTERALINE, A β2-ADRENERGIC RECEPTOR AGONIST, DIFFER IN PREMENOPAUSAL VERSUS POSTMENOPAUSAL WOMEN

Ronée E. Harvey1,1, Jacqueline K. Limberg1, Wayne T. Nicholson1, Timothy B. Curry1, Jill N. Barnes1, and Michael J. Joyner1

1Dept. of Anesthesiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, 2Mayo Grad. Sch., Mayo Clinic Coll. of Med., 200 First St. SW, Rochester, MN, 55905, 3Dept. of Kinesiology, Univ. of Wisconsin, Madison, 200 Observatory Dr., Madison, WI, 53706.

Beta-2-adrenergic vasodilator responses are blunted in men at risk for developing hypertension; however, the role of β2-adrenergic receptors in hypertension pathophysiology in women is unclear. It is possible that older, postmenopausal women, who have a greater hypertension risk in comparison to young, premenopausal women, have altered β2-adrenergic receptor responsiveness. The goal of this study was to determine if forearm vascular responses to the β2-selective, adrenergic-receptor agonist teruteraline are blunted in healthy older, postmenopausal women (59±2 years) compared to healthy young, premenopausal women (28±3 years). Forearm blood flow (FBF), venous occlusion plethysmography and mean arterial pressure (MAP, intra-arterial brachial catheter) were measured at baseline and during intra-arterial infusions of teruteraline at 0.1, 0.5, 1.0, and 2.0 μg/100 ml tissue/min. These women did not differ in body mass index or blood pressure. Baseline FBF was similar between premenopausal and postmenopausal women (2.2±0.4 vs. 2.0±0.5 ml/100 ml tissue/min, respectively; p>0.05) and rose significantly within each group at the highest teruteraline dose (1.7±2.1 vs. 7.1±19.9 ml/100 ml tissue/min, respectively; p>0.05); however, there were no FBF differences between the groups. Baseline forearm vascular conductance (FVC=FBF/MAP*100) was not different between groups (2.4±0.4 vs. 1.8±0.4 ml/100 ml tissue/min/mmHg; premenopausal vs. postmenopausal, respectively; p<0.05). Terbutaline infusion at the highest dose resulted in a significant increase in FVC in both premenopausal and postmenopausal women (12.0±2.5 vs. 6.3±1.9 ml/100 ml tissue/min/mmHg, respectively; p<0.05). The increase in FVC was greater in premenopausal women when compared with postmenopausal women (interaction of group x dose, p<0.05). These data provide evidence to support that β2-adrenergic receptor responsiveness is blunted with aging and menopause in healthy women. Funded by AHA 14PRE18040000, NIH HILS3947 and HL118154, and NCATS U1L TR000135 (CTSA).

17.4 ET-, RECEPTOR ANTAGONISM PREVENTS ANG II-INDUCED HYPERTENSION IN VCD-TREATED POSTMENOPAUSAL FEMALE MICE

Dennis Pollow Jr1, Melissa J. Romero-Alches1, and Hedwen B. Brooks1

1Physiology, Univ. of Arizona, 1656 E. Mabel St, Tucson, AZ, 85724.

The VCD model of menopause (4-vasinolyesin.day dose, VCD) preserves the “perimenopause” transitional period and the androgen secreting capacity of the residual ovarian tissue. Using this model of menopause, we recently demonstrated that perimenopausal mice are resistant to Ang II-induced hypertension and displayed minimal changes in blood pressure and cardiac remodeling. In contrast, postmenopausal mice develop a significant Ang II-induced hypertension sensitivity (significant increase in SBP and MAP), along with renal hypertrophy and cardiac fibrosis. Endothelial t-PA release in middle-aged women. Impaired fibrinolytic function does not appear to contribute to the increased in vascular risk with prehypertension in middle-aged women. Protected to determine whether ET, receptor signaling contributes to the increased sensitivity to Ang II hypertension in VCD-treated postmenopausal female mice (Meno, Ang II (800ng/kg/min, 14d) was infused with or without injections of the ET, receptor antagonist ABT-627 (5mg/kg, 1p) (ET,). Premenopausal females received sesame oil vehicle with and without Ang (C, C/Ang II). Ang II infusion induced a significant increase in systolic blood pressure in VCD-treated postmenopausal mice compared to Ang II infusion in premenopausal mice (Con Δ2±2 mmHg, C/Ang II Δ15±2 mmHg, Meno/Ang II Δ37±6 mmHg, P<0.05 vs Con, #P<0.05 vs C/Ang II). ET, receptor antagonism prevented this increase in blood pressure in postmenopausal females (ETA, Δ14±3 mmHg, P<0.05 vs Meno/Ang II). Quantitative real-time PCR demonstrated that whole kidney mRNA expression of collagen type IV was significantly reduced with ET, receptor antagonism (Meno/Ang II 1.0±0.07 vs 6.08±0.08 in ETA treated, P<0.05). Together, these data suggest that ET-1 signaling, via ET, receptor activation, promotes Ang II induced hypertension and renal damage in postmenopausal females. Targeting ETA may be an effective strategy to treat postmenopausal hypertension.

17.5 MYOCARDIC TONE IS INCREASED IN RESISTANCE-SIZED ARTERIES ISOLATED FROM RAT MODELS OF POST-MENOPAUSAL PHYSIOLOGY

Jacqueline Noyak1, Spencer Dennis2, Lawrence Woodward3, Zachary Thomas4, Matthew Thomas4, Joseph McCarthy5, Adam Underwood6, and Rolando Ramirez7

Women are at increased risk of heart attack and stroke after menopause. Estrogen replacement therapy is the remedy for the symptoms of menopause (hot flashes, etc.); however, the mechanism for the cardio-protection is not clear. The myogenic behavior of resistance sized arteries is an index of the balance between vasodilatory and vasoconstrictory pathways. The increased risk of heart attack and stroke in postmenopausal women suggests an increase in vasoconstrictor pathways or a decrease in vasodilatory pathways involving nitric oxide and endothelin B receptor (ETB). Nitric oxide expression further increased myogenic tone in coronary arteries from OVX rats. For example, the regional arteries of OVX rats showed greater myogenic tone compared to Ang II infusion in premenopausal mice (Con Δ2±2 mmHg, C/Ang II Δ15±2 mmHg, Meno/Ang II Δ37±6 mmHg, P<0.05 vs Con, #P<0.05 vs C/Ang II). ET, receptor antagonism prevented this increase in blood pressure in postmenopausal females (ETA, Δ14±3 mmHg, P<0.05 vs Meno/Ang II). Quantitative real-time PCR demonstrated that whole kidney mRNA expression of collagen type IV was significantly reduced with ET, receptor antagonism (Meno/Ang II 1.0±0.07 vs 6.08±0.08 in ETA treated, P<0.05). Together, these data suggest that ET-1 signaling, via ET, receptor activation, promotes Ang II induced hypertension and renal damage in postmenopausal females. Targeting ETA may be an effective strategy to treat postmenopausal hypertension.
example, the coronary arteries percent tone was increased to 28.9±13.7% at 60mmHg. In conclusion, myogenic tone is increased in resistance-sized coronary and cerebral arteries isolated from both models of post-menopausal physiology. Furthermore, in the OXV model, vasodilatory pathways involving ETB and nitric oxide remain intact. This work is supported by NIH R15 HL09734.

17.6 CIRCULATING STEROID HORMONES HAVE NO INFLUENCE ON THE CARDIOVASCULAR BENEFICIAL EFFECT IN TRAINED HYPERTENSIVE POSTMENOPAUSAL WOMEN

Jane Novijs1, Aline Jamroz2, Guillerme.Pousa1, Hysor Arasjio2, Maria Delbri1, and Angelina Zanesco2

Introduction: It has been demonstrated that the prevalence of arterial hypertension increases in women after menopause that has been associated with estrogen deficiency. On the other hand, estrogen administration did not protect women from cardiovascular diseases (CVD). In addition, evidence has shown that high testosterone levels are associated with an adverse cardiovascular risk factor after menopause. However, most of these data are from experimental model of menopause. It is well known that cortisol plays an important role in CVD. Nonetheless, the effects of this steroid hormone are not fully understood in the development of CVD in women.

Aim: Therefore, the goals of the study were: 1) to examine testosterone and cortisol concentrations in hypertensive (HT) postmenopausal women comparing with normotensive (NT) group; 2) to examine the effects aerobic exercise training (AET) on BP and steroid hormones in both groups.

Methods: In order to test the hypothesis, serum testosterone (fasting) and cortisol concentrations (fasting and postprandial state) were measured in 28 HT (57±1 yrs) and 33 NT (56±1 yrs) women at baseline and after AET. Supervised AET was performed in a treadmill, moderate intensity, 30-40 min, three times/week, 24 sessions. This study has been approved by UNESP Ethics Committee (4395/2010).

Results: At baseline, no differences were found in both testosterone (NT: 0.86±0.11 vs. HT: 0.76±0.16 nmol/L) and cortisol (NT: 464.9±287.7 vs. HT: 453.6±24.6 nmol/L) between the two groups, in fasting state. Cortisol concentrations were also similar between the two groups (NT: 142.4±14.0 and HT: 137.5±16.6 nmol/L) measured at postprandial state. After AET, there were no significant changes on steroid concentrations in both groups in fasting state. However, in postprandial we found a similar decrease in cortisol concentration from trained NT (-41%) and HT (-35%) postmenopausal women. AET was also effective in lowering diastolic BP (-5%) in HT group, but not in NT.

Conclusions: Our data show that both steroid hormones have no influence on BP regulation in postmenopausal women. Moreover, both groups respond equally to AET in lowering cortisol concentrations, but differently to BP reduction. Thus, our findings suggest that another signaling pathway is involved in the cardiovascular beneficial effect in trained postmenopausal women. Financial Support: Fapesp.

17.7 REINAL FUNCTION IN AGING HYPERANDROGENIC FEMALE RATS

Chetan N. Patil1,2, Carolina Dalmasso1,2, Rodrigo O. Maranon2, Andrew Harris2, Huimin Zhang1,2, and Jane F. Rockelhoff2

1Physiology & Biophysics, Univ. of Mississippi Med. Ctr., 2500, N. State St., Jackson, MS, 39216, 2Women’s Hlth. Res. Ctr., Univ. of Mississippi Med. Ctr., 2500, N. State St., Jackson, MS, 39216.

Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in premenopausal women (PMW), characterized by hyperandrogenemia, metabolic syndrome and inflammation. Whether PMW who have had PCOS when young develop early cardiovascular disease (CVD) is controversial despite the fact that androgen levels remain elevated even after menopause. We have characterized a model of hyperandrogenemia in female rats and have aged them to 22-25 months. Renal function was measured by in vivo renal function studies (for infusion of 50% globulin/50% BSA in Ringer’s at 10 mL/kg BW/hr for 45 min and then 1.25 mL/kg BW/hr throughout the study), jugular vein (for infusion of 3H-inulin 3 µCi/mL in saline at 1ml/hr), Tracheostomy was performed and a catheter was placed into the left ureter for urine collection. Two 30 min urine collections were performed with midpoint plasma samples taken. At the end of the study, a 23 g needle connected to PE10 tubing was inserted into the left renal vein to measure extraction of 3H-inulin across the kidney to calculate renal plasma flow (RPF). Aging DHT-treated females had significantly higher body weight (420±18 vs. 309±8 g, p=0.0001), MAP (130.5±10 vs 110±4 mmHg, p=0.05), left kidney weight (1.49±0.11 vs. 0.84±0.12 g, p=0.0001) than placebo controls. Placebo treated females had normal GFR whereas DHT-treated females had a 40% reduction in GFR (0.67±0.07 vs. 1.12±0.08 mL/min/g KW, p=0.01) and 40% reduction in RPF (2.31±0.14 vs 4.08±0.51 mL/min/g KW, p=0.05). Thus chronic hyperandrogenemia in aging females significantly reduces renal function, and likely contributes to hypertension. Studies must be done in PMW with PCOS that have elevated androgens after menopause to determine if their renal function is compromised. Our data would suggest that women who have had PCOS when younger do in fact have more CVG with age than non-PCOS women. Supported by NIH RO1HL66072 and PO1HL51971.

17.8 EFFECT OF ESTRADIOL REPLACEMENT IN HYPERTENSION IN THE AGING FEMALE DAHL SALT SENSITIVE RAT

Licy L. Yanes Cardozo1,2, Damian G. Romero1, and Jane F. Rockelhoff2

1Med., Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216, 2Physiology & Woman’s Hlth. Res. Ctr., Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216, 3Biochemistry, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216.

Menopause is associated with a higher prevalence of hypertension, obesity, and insulin resistance in women. The mechanisms underlying menopause-associated cardiovascular comorbidities remain to be elucidated. Lack of estrogens had been proposed to be one of the main mechanisms. In vivo and in vitro studies suggest that estrogens decrease blood pressure (BP) acting as a vaso dilator. However, randomized clinical trials have shown no effect of estradiol replacement on BP in postmenopausal women, suggesting that the time that estradiol replacement begins is a critical factor in the response to estradiol.

Aging female Dahl Salt Sensitive (DS) rats develop spontaneous hypertension by 12 mos of age and are no longer estrous cycling. In the present study, we aimed to determine the impact of estradiol replacement on hypertension in the aging female DS rats, and hypothesized that chronic estradiol replacement would normalize BP in aging female DS. Female DS rats, aged 12 mos, were implanted subcutaneously with 17β-estradiol pellets of two increasing concentrations (1x and 5x) consecutively. Animals were maintained in standard rodent diet (0.3% NaCl) with free access to water. BP was measured by radiotelemetry throughout the study period. At the end of the experimental period, plasma estradiol, insulin, leptin and aldosterone were determined by radioimmun assay and visceral fat weighted. The low estradiol dose (1x) increased plasma estradiol levels by about 3-fold compared to placebo (13.54±2.29 vs. 4.26±1.29 pg/ml, p=0.01). This dose of estradiol caused a transient 10 mm Hg reduction in BP that lasted only 4 days (164±2 vs. 154±5 mmHg; p=0.05) and then BP returned to baseline values (164±3 vs. 165±3 mm Hg). Subsequently, the higher dose (5x) of 17β-estradiol increased plasma estradiol by almost 40-fold compared to placebo (84.28±9.67 vs. 2.30±0.45 pg/ml, p<0.001), but only a transitory decrease in BP without reaching statistical significance. In contrast, high dose estradiol-treated rats had lower levels of plasma aldosterone (19.50±4.16 vs. 44.62±8.36 ng/µl, p<0.05), leptin (4.32 ±0.62 vs. 8.26±1.45 mg/µl, p<0.05) and visceral fat (23±6 vs 11±3 mg/gr body weight) at the end of the treatment. In summary, estradiol treatment caused a tachyphylactic effect on BP in aging female DS rats despite the sustained reduction in plasma aldosterone, leptin and visceral obesity. Our study suggests that the tachyphylactic effect of estradiol on BP with aging may contribute to the lack of cardio-protective effects of estradiol supplementation seen in postmenopausal women.

17.9 ROLE OF THE RENAL NERVES AND ANGIOTENSIN II IN A MODEL OF POSTMENOPAUSAL HYPERTENSION

Rodrigo Maranon2, Carolina Dalmasso1,2, Chetan Patil1,2, Licy Yanes Cardozo1,2, and Jane F. Rockelhoff2

1Physiology & Biophysics, Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39211, 2Women’s Hlth. Res. Ctr., Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 39216.

Hypertension in postmenopausal women is not as well controlled in men regardless of ethnicity of the cohort our model of postmenopausal hypertension, the aging female spontaneously hypertensive rats (P MR), we found that blood pressure remains 110 mm Hg despite concomitant treatment antagonists of angiotensin AT1 receptors, endothelin ETA receptors and 20-HETE synthesis inhibitors. We have also shown that the sympathetic nervous system and the renal nerves contribute to the hypertension in PMR. In the present study, we determined whether renal denervation in combination with AT1 receptor antagonists would reduce BP below that found with triple therapy. PMR (aged 18 mos, n=5-6/group) underwent uninephrectomy, and two weeks
17.10 ELDERLY WOMEN MAINTAIN BETTER CEREBRAL BLOOD FLOW REGULATION TO BOTH PRESSURE AND CARBON DIOXIDE THAN ELDERLY MEN

Jorge Serrador1,2, Levy Reyes2, Farzaneh Soroud2, and Lewis Lipsitz3

1Pharmacology, Physiology & Neurosciences, Rutgers Univ., Med. Sci. Bldg, 1619, 185 S. Orange Ave, Newark, NJ, 07101-1799, 2War Related Illness & Injury Study Ctr., Dept. of Vet. Affairs, VA NJ Hlth. Care Sys., 1200 Center St., Roslindale, England5, Tucker Avra6, Mary Anne Della-Fera4, Clifton Baile3,4, and Srujana Raya-Colette Miller1, Suresh Ambati2, Natalie Hohos3, Diane Hartzell4, Erica Bass4, Emily CLECS

ABSTRACTS OF INVITED AND VOLUNTEERED PRESENTATIONS

Cardiovascular, Renal and Metabolic Diseases: Physiology and Gender

RESULTS:

We have previously found that both male and female elderly individuals have intact cerebral autoregulation but impaired cerebrovascular reactivity, with women performing better on both. The goal of this work was to examine if there were differences in the cerebrovascular ability to dilate vs constrict with changing end-tidal CO2 levels and if there were sex differences in this response. Previous data in the peripheral vasculature has demonstrated that populations with impaired endothelial function show a lack of dilation with intact constriction. METHODS: We used transcranial Doppler to evaluate cerebrovascular reactivity in 419 (186 males) subjects of both sexes. Using a non-invasive method, we measured the changes in cerebral blood flow after hypercapnia (hypocapnia) and hypocapnia (mild hypercyanosis) as well as cerebrovascular autoregulation (arbitrarily set to maneuver). All procedures were approved by the local institutional review board. Results: Male subjects had significantly lower CO2 vasoreactivity (Males: 2.8±0.7, Females: 3.1±0.8 %/mmHg CO2, p<0.001) as we have previously reported. Examination of their response to reduced endtidal CO2 (hypocapnia) found that there was no difference in the reduction of cerebral flow velocity or vasoconstrictor response (Males: 3.1±0.7, Females: 3.5±0.7 %/mmHg CO2, p<0.06). In contrast, while both sexes had an impaired ability to vasodilate to CO2, males demonstrated an even greater impairment than females (Males: 0.3±1.2, Females: 0.2±1.1 %/mmHg CO2, p<0.001). Interestingly, there was no correlation between the vasoconstrictive or vasodilator response and measures of cerebral autoregulation. In addition, controlling for diabetes, hyperlipidemia or hypertension did not change the results. Conclusion: These data suggest that an impaired response to a dilatory cerebrovascular stimulus (hypocapnia) may indicate that cerebral endothelial dysfunction is present in aging. In contrast smooth muscle regulation of the vasculature remains intact since cerebral vessels were able to constrict during hypocapnia and dilate during a hypertensive stimulus while standing. Thus, improving endothelial function may result in improved dilation of vessels during stimuli that activate the endothelial pathways such as hypocapnia.

17.11 ESTROGENIC PHYTOCHEMICALS REDUCE BONE ADIPOSITY AND IMPROVES BONE QUALITY FOLLOWING OVARIECTOMY

Colette Miller1, Suresh Ambati2, Natalie Holos1, Diane Hartzell1, Erica Bass1, Emily England1, Tucker Avra1, Mary Anne Della-Fera1, Clifton Baile2,3, and Stojana Rayac2,3

Menopause increases adiposity and the risk of osteoporosis. Partly as a result of the carcinogenic concerns of hormone replacement therapy, increasing numbers of postmenopausal women are taking botanical and dietary supplements to manage adverse body composition changes. Adipocytes and osteoblasts share a common progenitor cell, the mesenchymal stem cell, and thus botanical supplements may improve both adipose tissue and bone together. The efficacy of such supplements are often in question, which may be related to the “one molecule, one target” approach. Thus, the goal of the current research was to combine multiple natural products with synergistic activity as a result of actions on multiple molecular targets that impact the life cycle of adipocytes and bone precursor cells. Aged, ovariolectomized (OVX) Fisher 344 rats from the National Institute of Aging colony were fed either a control diet or one containing various doses of phytochemicals (diet 1: 1000 mg/kg genistein, (G); diet 2: 500 mg/kg G, 200 mg/kg resveratrol (R), and 1000 mg/kg quercitin (Q); diet 3: 1000 mg/kg G, 400 mg/kg R, and 2000 mg/kg Q). Following 16 weeks, a dose-response in the number of adipocytes were found within femoral trabecular bone. Diet 3 in particular caused a significant reduction compared to OVX controls (p<0.01). Bone adiposity was also found to be significantly correlated with the retroperitoneal fat depot, which was additionally reduced with dietary phytochemicals (p<0.05). Bone quality was determined using micro CT measures of the femoral bone. To be expected, OVX reduced bone quality compared to sham rats. Phytochemical supplementation improved trabecular bone quality compared to OVX, however did not completely restore it to levels of sham rats. Serum IGF-1, a bone-promoting hormone, was similarly reduced following OVX. Dietary phytochemicals (diets 1 and 3) improved IGF-1 levels compared to OVX-control rats. While we were unable to completely reverse the damage caused by surgical menopause, the phytochemicals used in our study improved trabecular bone quality and adiposity compared to OVX. Thus we conclude that synergistic, plant-derived compounds with estrogenic properties may be helpful as part of a combined effort to prevent maladaptive bone changes including adipocyte infiltration and structural loss. Further, we provide mounting evidence that dietary phytochemicals may reduce adiposity as a result of menopause. This abstract does not reflect US EPA policy.

17.12 EFFECTS OF MENOPAUSE AND ACUTE EXERCISE ON BRACHIAL ARTERY FLOW MEDIATED DILATION AND PLASMA ENDOThELIAL MICROPARTICLES

Corinna Serviente1, Daniel Shill2, Kasey Lansford3, Nathan Jenkins2, and Sarah Witkoski4

1Kinesiology, Univ. of Massachusetts, Amherst, 30 Eastman Ln., Rm. 110, Amherst, MA, 01003, 2Kinesiology, Univ. of Georgia, 115M Ramsey Ctr., 330 River Rd., Athens, GA, 30602.

Menopause is associated with an increase in risk factors for cardiovascular disease. Some evidence suggests a decrease in endothelial function from the peri- to postmenopausal stages. As women move into later menopausal stages, they may not exhibit responses to exercise that are typical in most populations. Objective: To evaluate differences in markers of endothelial function in response to an acute bout of exercise in peri-and post-menopausal women. Methods: Perimenopausal (PERI: 47 ± 2.6 yr) and late postmenopausal (POST: 59 ± 2.0 yr) women, free of cardiovascular disease, completed an acute bout of exercise at 60-64% of VO2 peak for 30 min. Prior to, and 30 min following exercise, flow mediated dilation (FMD) was measured and blood was collected to assess CD62E- and CD31+/CD42b- endothelial microparticles (EMP) concentrations. FMD (PERI: n=4; POST: n=6) was assessed via imaging of the brachial artery at baseline and after reactive hyperemia. FMD (% change) was determined using micro CT measures of the femoral bone. To be expected, OVX reduced bone quality compared to sham rats. Phytochemical supplementation improved trabecular bone quality compared to OVX, however did not completely restore it to levels of sham rats. Serum IGF-1, a bone-promoting hormone, was similarly reduced following OVX. Dietary phytochemicals (diets 1 and 3) improved IGF-1 levels compared to OVX-control rats. While we were unable to completely reverse the damage caused by surgical menopause, the phytochemicals used in our study improved trabecular bone quality and adiposity compared to OVX. Thus we conclude that synergistic, plant-derived compounds with estrogenic properties may be helpful as part of a combined effort to prevent maladaptive bone changes including adipocyte infiltration and structural loss. Further, we provide mounting evidence that dietary phytochemicals may reduce adiposity as a result of menopause. This abstract does not reflect US EPA policy.
18.0 PLENARY LECTURE

18.1 STUDYING BOTH SEXES: A NEW FRONTIER FOR DISCOVERY

Janine Clayton1

1Office of Res. on Women's Hlth., Natl. Inst. of Hlth., 6707 Democracy Blvd., Democracy II, Ste 400, Bethesda, MD, 20892.

The National Institutes of Health (NIH) funds basic, translational, and clinical research. From basic research to clinical care, studying both sexes is a guiding principle to aid in experimental design, hypothesis-generation and -testing, and expanding understanding and deriving knowledge toward turning discovery into health for both women and men. Numerous factors prompted the development of new NIH policy, announced in May 2014, to ensure that sex is considered a basic biological variable in NIH-funded preclinical research. These included scientific progress emerging from NIH-funded laboratories, congressional interest and support, and ongoing NIH efforts to enhance reproducibility and transparency in preclinical research. Starting with applications with receipt dates beginning January 25, 2016, NIH expects that sex as a biological variable will be factored into research designs, analyses, and reporting in vertebrate animal and human studies. Strong justification from the scientific literature, preliminary data, or other relevant considerations must be provided for applications proposing to study only one sex. Selecting an appropriate preclinical model that considers the role of sex in the context of a specific research question of interest, especially for studies that model human physiology and pathology, is central to the scientific inquiry process. Reference: Clayton, J.A. & Collins, F.S. 2014. NIH to balance sex in cell and animal studies. Nature 509, 282-283. NIH Guide Notice NOT-OD-15-102. http://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-102.html.

19.0 OBESITY, METABOLIC SYNDROME, GENDER AND SEX

19.1 IN UTERO CONSEQUENCES OF RODENT VERTICAL SLEEVE GASTRECTOMY ON MATERNAL HEALTH AND FETO-PLACENTAL DEVELOPMENT

Bernadette Graven1

1Neurobiology & Anatomical Sci., Univ. of Mississippi Med. Ctr., 2500 N. State St., Jackson, MS, 34216.

Despite many similar improvements between sexes in metabolic health following surgical weight loss, female reproductive health and transgenerational effects of surgery remain unclear. Our previous work in rodents suggests that following vertical sleeve gastrectomy (VSG, a surgery which removes 80% of the stomach), offspring born to VSG dams are small-for-gestational age. When challenged with a high fat diet (HFD) during adulthood, these animals are glucose intolerant and have levels of adiposity in excess to lean and obese control offspring. In the present studies, we sought to identify the key in utero insults that may be driving these defects. Female Long-Evans rats were placed on HFD for 3 weeks and then received either sham or VSG surgery. Females exhibited similar body weight and glucose and lipid improvements as previously reported. Females were then mated with males; during the first 2 weeks of gestation, VSG animals gained weight and consumed similar calories to control dams. During gestational days 12-18 (G12-18), VSG body weight gain precipitously dropped off. Blood pressure measurements taken at G19 showed significant reductions in mean arterial pressure in comparison to lean and obese control offspring. Animals dropped off. Blood pressure measurements taken at G19 showed significant reductions in mean arterial pressure in comparison to lean and obese controls. The most accepted etiology of preeclampsia (PE) is that shallow trophoblast invasion of the maternal spiral arteries leads to placental underperfusion and triggers development of the maternal syndrome. This theory carries the hemodynamic prediction that, in normal pregnancy, reduced pre-placental flow resistance will also accelerate blood flow to proximal vessels and thereby increase shear stress and stimulate outward circumferential remodeling. We, and others, have shown that inhibition of endothelial nitric oxide synthase (eNOS) attenuates this process, implicating NO as the primary effector of arterial widening and supporting reduced NO signaling contributing to PE. Yet, uterine arteries and veins also lengthen considerably during pregnancy, and NOS inhibition has no effect on this axial elongation. Here, we hypothesized that axial growth may be triggered by myometrial distension secondary to fetoplacental growth. Using a rat model, myometrial distension was stimulated by inflating medical grade silicone into one uterine horn. The initial stretch was followed by continued myometrial distraction and the response to pharmacological intervention. There are gender differences in diabetic symptoms such as impaired fasting glucose and impaired glucose tolerance also differ by sex. Some result from the action of estrogens and androgens on glucose homeostasis after puberty and in adults. In females, estrogen favors glucose homeostasis via estrogen receptors (ERs) by ameliorating insulin secretion and sensitivity. In males, testosterone is converted to estrogen and maintains fuel homeostasis via ERs and the androgen receptor, which share related functions to improve insulin secretion and sensitivity.

20.0 PREGNANCY AND PRE-ECLAMPSIA

20.1 MECHANISMS OF MATERNAL UTERINE VASCULAR REMODELING DURING GESTATION

George Oso1

The most accepted etiology of preeclampsia (PE) is that shallow trophoblast invasion of the maternal spiral arteries leads to placental underperfusion and triggers development of the maternal syndrome. This theory carries the hemodynamic prediction that, in normal pregnancy, reduced pre-placental flow resistance will also accelerate blood flow to proximal vessels and thereby increase shear stress and stimulate outward circumferential remodeling. We, and others, have shown that inhibition of endothelial nitric oxide synthase (eNOS) attenuates this process, implicating NO as the primary effector of arterial widening and supporting reduced NO signaling contributing to PE. Yet, uterine arteries and veins also lengthen considerably during pregnancy, and NOS inhibition has no effect on this axial elongation. Here, we hypothesized that axial growth may be triggered by myometrial distension secondary to fetoplacental growth. Using a rat model, myometrial distension was stimulated by inflating medical grade silicone into one uterine horn. The initial stretch was followed by continued myometrial distraction and the response to pharmacological intervention. There are gender differences in diabetic symptoms such as impaired fasting glucose and impaired glucose tolerance also differ by sex. Some result from the action of estrogens and androgens on glucose homeostasis after puberty and in adults. In females, estrogen favors glucose homeostasis via estrogen receptors (ERs) by ameliorating insulin secretion and sensitivity. In males, testosterone is converted to estrogen and maintains fuel homeostasis via ERs and the androgen receptor, which share related functions to improve insulin secretion and sensitivity.

20.2 SPONTANEOUS SUPERIMPOSED PREECLAMPSIA IN DAHL SALT SENSITIVE RATS
of the characteristics observed in human superimposed preeclampsia; therefore this
dawley strain. In summary, the dahl S pregnancy phenotype is consistent with many
friction in the Dahl S pregnancy when compared to pregnancy in the healthy Sprague
Furthermore, there is a greater incidence of fetal demise and intrauterine growth re-
mothers who have experienced preeclampsia and their offspring.

20.3
VASOPRESSIN: A NEW BEGINNING FOR THE END
PREECLAMPSIA?
Mark Santulli1
1Dept. of OB/Gyn, Div. of Maternal Fetal Med., Univ. of Iowa, 200 Hawkins Dr.,
Despite being in the medical literature for over 2000 years, the diagnosis and treat-
ment for preeclampsia has essentially remained unchanged. To date, the only cure for
this potentially devastating hypertensive disease in pregnancy is an often preterm de-
ity affects 5-7% of all pregnancies claiming the lives of 76,000 mothers and
500,000 children each year. The ability to predict, prevent, and treat preeclampsia is
hampered by its unclear and multifactorial pathogenesis of which the initiating, first
trimester mechanisms are uncertain. We have demonstrated that maternal plasma
copein, a stable protein byproduct of arginine vasopressin (AVP) synthesis and re-
lease, is a robust predictor of the development of human preeclampsia as early as the
6th week of gestation. These data from our lab and others, suggest an early role of
AVP in the pathogenesis of preeclampsia. Our group demonstrated that chronic
infusion of AVP throughout mouse pregnancy phenocopies all the vascular, renal, ob-
stetric, and immune phenotypes in human preeclampsia. Early immune dysregulation
is an early, initiating mechanism of preeclampsia. AVP is a hormone active in many
vascular, renal, growth, and immune mechanisms. Given its early dysregulation in human preeclampsic pregnancies and its ability to recapitulate all the phenotypes of
human preeclampsia in mice, we contend AVP is a novel, mechanistic connection
between the known early and mid-gestation molecular processes that cause pre-
eclampsia.

21.0
POPULATION STUDIES-GENDER AND SEX IN CVD, RENAL
DISEASE, AND METABOLIC SYNDROME

21.1
SEX DIFFERENCES IN RISK FACTORS FOR STROKE IN
WOMEN
Kathryn Beunardeau1
Sch., 900 Commonwealth Ave., 3rd Fl., Boston, MA, 02215.
Stroke is the third leading cause of death for women, and fourth-leading cause of
death for men. Women account for a majority of stroke deaths (61%), and have a
higher lifetime risk of stroke. Several risk factors for stroke are sex specific, such as
pregnancy and pregnancy-related conditions (including preeclampsia, pregnancy-in-
duced hypertension, gestational diabetes, premature birth, and birth of small size for
gestational age). In addition, to the need for long-term data on the impact of preg-
nancy-related conditions and hormonal conditions, such as polycystic ovarian syn-
drome, intervention trials to reduce associated risk of stroke among these groups of
women are needed. In addition, oral contraceptives and postmenopausal hormone
therapy are associated with risk and used exclusively by women. Other risk factors
have a higher prevalence or a higher associated risk of stroke in women, including
diabetes mellitus, hypertension, atrial fibrillation, depression and psychosocial stress
and trauma. Effective means of reducing risk of stroke among women with these con-
ditions are needed. For example, among patients with atrial fibrillation, risk scores that
take gender into account improve risk stratification; however, rates of anticoagulation
have remained lower in women than men. Relatively similar risk reductions for both
men and women have been observed in the primary prevention of stroke by lifestyle
factors. A female-specific stroke score should be developed and evaluated to better re-

21.2
GENDER DIFFERENCES IN HYPERTENSION AND
HEALTH BEHAVIORS
Marie Krauss-Wood2,3
1Med., Tulane Univ. Sch. of Med., 1430 Tulane Ave., New Orleans, LA, 70112,
2Med., Tulane Univ. Sch. of Public Hlth. and Tropical Med., 1430 Tulane
Ave., New Orleans, LA, 70112, 3Res., Ochsner Hlth. Sys., 1540 Tulane Ave, New
Orleans, LA, 70121.
Hypertension is a key modifiable risk factor for cardiovascular disease in females and
males. The presentation will highlight gender differences across the lifespan in cardio-
vascular disease, hypertension, and adherence to healthy lifestyle and medication-
taking behaviors to improve hypertension control and reduce CVD risk. Efforts to
overcome gender-specific barriers and tailor interventions that reduce risk for poor ad-
herence and uncontrolled hypertension have the potential for substantive impact on
reducing CVD across the lifespan and improving heart disease survival. The work
was supported, in part, by the National Institutes of Health: Award R01 AG025536 from the
National Institute on Aging, Award K12HD045341 from the Eunice Ken-
nedy Shriver National Institute of Child Health & Human Development, and Award
U54 GM104940 from the National Institute of General Medical Sciences for the
Louisiana Clinical and Translational Science Center.

21.3
TOBACCO SMOKING EXPOSURE FROM CHILD-
HOOD TO ADULTHOOD AND ADULT SUBCLINICAL
VASCULAR DISEASE
Shenggu L1, Marie Krauss-Wood2,3, Paul Whelton1, and Wei Chen2
1Dept. of Epidemiology, Tulane Univ., 1440 Canal St., New Orleans, LA, 70112,
2Dept. of Med., Tulane Univ., 1430 Tulane Ave, New Orleans, LA, 70112, 3Ochsner
Tobacco smoking has been well established as a major risk factor for cardiometabolic
diseases. However, limited information is available regarding the effects of tobacco
smoking exposure beginning in childhood on adult cardiometabolic conditions. The
current study examined the adverse effects of tobacco smoking exposure beginning in
childhood on body mass index (BMI), ankle-brachial pulse wave velocity (abPWV)
and carotid intima-media thickness (CIMT) in women and men from the Bogalusa
Heart Study. Among non-smoking adults, exposure to secondhand smoking (SHS)
either in childhood or in adulthood was associated with increased BMI only in
men (P<0.001), with women continuously exposed to SHS from childhood having
the highest BMI compared to women with other SHS exposure statuses. Ex-
posure to SHS either in childhood or in adulthood was associated with increased CIMT
in both men and women, with individuals continuously exposed to SHS from childhood
having the greatest CIMT compared to those with other exposure statuses. Despite
having lower BMI, adult cigarette smokers had faster abPWV and greater CIMT
in both men and women. Further, cigarette smoking significantly exacerbated the
adverse effects of age and metabolic syndrome on CIMT and of blood pressure on
abPWV. In conclusion, SHS exposure beginning in childhood is associated with increased
BMI, arterial stiffness, and atherosclerosis; cigarette smoking in adult life in-
creases arterial stiffness and atherosclerosis and exacerbates the adverse effects of
other risk factors on arterial stiffness and atherosclerosis, in otherwise healthy adults.
Support: NIH K12HD045341, 5R01ES021724, and 2R01AG16592; AHA
13SDG1460068. REFERENCES: Yun M, Li S, Ge S, Fernandez C, Chen W,
Srinivasan SR, Berenson G (2015). Tobacco smoking strengthens the association be-
 tween elevated blood pressure and arterial stiffness: The Bogalusa Heart Study. J
Hypertens 33:266-274. Chen W, Yun M, Fernandez C, Li S, Sun D, Lai CC, Hua Y,
Wang F, Zhang T, Srinivasan SR, Berenson GS (2015). Secondhand smoke ex-
posure is associated with increased carotid artery intima-media thickness: The Bog-
 alusa Heart Study. Atherosclerosis 240:374-379. Li S, Yun M, Fernandez CA,
Xu J, Srinivasan SR, Chen W, Berenson GS (2014). Cigarette smoking exacerbates the ad-
verse effects of age and metabolic syndrome on subclinical atherosclerosis: The
2015 APS Conference

Cardiovascular, Renal and Metabolic Diseases: Physiology and Gender

AUTHOR INDEX

*Indicates Invited Speaker

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adedeji, T., 6.6</td>
<td>Backstrom, M., 16.1</td>
<td>Caldwell, T., 6.21</td>
<td>Dahir, N., 6.10</td>
<td>Haitjema, S., 4.3</td>
<td>Hughes, M., 4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ajayo, O., 5.2</td>
<td>Baghdoyan, H. A., 6.14</td>
<td>Cannon, J., 6.20</td>
<td>Dalmasso, C., 7.11, 17.7, 17.9</td>
<td>Halade, G. V., 5.11</td>
<td>Hughson, R., 5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akther, D., 13.6</td>
<td>Baile, C., 17.16</td>
<td>Carbone, D., 16.8</td>
<td>Daniel, J., 7.2</td>
<td>Hale, T., 5.6, 11.7, 14.7, 16.8</td>
<td>Hutson, D., 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akther, F., 6.8</td>
<td>Bairey Merz, C. N., 5.8, 6.12</td>
<td>Carneiro, F., 4.8</td>
<td>Daniels, D.*, 7.12, 8.2</td>
<td>Halperin-Kuhns, V., 6.19</td>
<td>Ibarra, F. R., 7.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Asoom, L., 4.5</td>
<td>Bally, C., 15.10, 20.4</td>
<td>Carroll, C., 14.7</td>
<td>Dasinger, J. H., 16.1</td>
<td>Hampl, V., 16.6</td>
<td>Ibrahim, T., 15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alami, W., 6.14</td>
<td>Bamert, T., 4.10, 17.1, 17.2</td>
<td>Casarini, D., 4.9</td>
<td>de Bakker, P. I., 4.3</td>
<td>Handa, R., 16.8</td>
<td>Intapad, S., 16.1, 16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alegret, M., 6.8</td>
<td>Bairam, A., 13.3</td>
<td>Chalow, S., 6.1</td>
<td>de Jager, S. C., 4.3, 4.4</td>
<td>Harrington, J., 12.2</td>
<td>Iyer, R. P., 5.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexander, B., 16.1</td>
<td>Balsier, D., 15.10, 20.4</td>
<td>Chapalamadugu, K., 5.7</td>
<td>de Leon-Pennell, K., 5.11</td>
<td>Harris, A., 15.9, 17.3</td>
<td>Jarema, K., 13.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Gburi, S., 4.6</td>
<td>Bammert, T., 4.10, 17.1, 17.2</td>
<td>Chen, W., 21.3</td>
<td>Della-Fera, M. A., 17.11</td>
<td>Harvey, R. E., 15.9, 17.3</td>
<td>Jarrete, A., 4.9, 12.4, 17.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambati, S., 17.11</td>
<td>Awotedu, A. A., 4.7</td>
<td>Clegg, D., 5.8, 6.12</td>
<td>Dennis, S., 17.5</td>
<td>Herget, J., 16.6</td>
<td>Jie, L., 15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaruma, C., 4.9</td>
<td>Awotedu, K., 4.7, 6.9</td>
<td>Coleman, T., 15.4</td>
<td>den Ruijter, Hester, 4.2, 4.3, 4.4</td>
<td>Hijmans, J., 4.10, 17.2, 12.5</td>
<td>Johnson, A., 16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angati, S., 14.7</td>
<td>Aziz, K., 5.1</td>
<td>Colucci, W., 5.1</td>
<td>DeSouza, C., 4.10, 17.1, 17.2</td>
<td>Hines, E., 13.2</td>
<td>Jones, K., 5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antunes, J., 4.8</td>
<td></td>
<td>Cortez-Cooper, M., 6.20</td>
<td>DeSousa, C., 4.10, 17.1, 17.2</td>
<td>Hoerger, T. J., 16.6</td>
<td>Joyner, M.*, 8.1, 14.4, 14.5, 15.9, 17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araujo, H., 17.6</td>
<td></td>
<td>Crislip, R., 7.4</td>
<td>DeSousa, C., 4.10, 17.1, 17.2</td>
<td>Hober, I., 5.1</td>
<td>Kumar, A., 7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argeri, R., 16.5</td>
<td></td>
<td>Cunningham Jr., M., 15.2, 15.7</td>
<td>Dah, N., 4.6</td>
<td>Hochhauser, E., 3.7, 5.9</td>
<td>Laguna, J. C., 6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arita, D. Y., 6.18</td>
<td></td>
<td>Cunningham, R., 14.6</td>
<td>Di Ciano, L. A., 7.10</td>
<td>Halade, G. V., 5.11</td>
<td>LaMarca, B., 15.2, 15.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrizurieta, E. E., 7.10</td>
<td></td>
<td>Curry, T. B., 17.3</td>
<td>Dickinson, J., 14.7</td>
<td>Hale, T., 5.6, 11.7, 14.7, 16.8</td>
<td>Lansford, K., 17.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asselbergs, F. W., 4.3</td>
<td></td>
<td></td>
<td>Diehl, K., 4.10, 17.1</td>
<td>Halperin-Kuhns, V., 6.19</td>
<td>Laouafa, S., 3.4, 13.3, 13.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avra, T., 17.11</td>
<td></td>
<td></td>
<td>Dillon, G., 13.5</td>
<td>Hampl, V., 16.6</td>
<td>Ledbetter, A., 13.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awotedu, A. A., 4.7</td>
<td></td>
<td></td>
<td>Dow, C., 4.10, 17.2</td>
<td>Handa, R., 16.8</td>
<td>Lee, C., 13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awotedu, K., 4.7, 6.9</td>
<td></td>
<td></td>
<td>Drake, T., 13.5</td>
<td>Harrington, J., 12.2</td>
<td>Lee, J., 6.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aziz, K., 5.1</td>
<td></td>
<td></td>
<td>Dube, S., 14.5</td>
<td>Harris, A., 7.11, 17.7</td>
<td>Levy, E., 5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azurmendi, P. J., 7.10</td>
<td></td>
<td></td>
<td>DuBose, T., 15.12</td>
<td>Hartzell, D., 17.11</td>
<td>Li, D., 5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>Ducharme, A., 5.3</td>
<td>Harvey, R. E., 15.9, 17.3</td>
<td>Li, S.*, 21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backstrom, M., 16.1</td>
<td></td>
<td></td>
<td>Dutta, S., 14.1</td>
<td>Hatch, G., 13.2</td>
<td>Limberg, J., 14.5, 17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baile, C., 17.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lindsey, M. L., 5.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bairey Merz, C. N., 5.8, 6.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lindsey, S.*, 3.3, 7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bairam, A., 13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lippsitz, L., 17.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balser, B., 15.10, 20.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Longo Mbeza, B., 6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bamert, T., 4.10, 17.1, 17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lookin, O., 5.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bao, S., 16.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lopes, R., 3.5, 4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbosa, M., 4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Loria, A.*, 11.2, 16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnes, J., 15.9, 17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lumeng, C., 6.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrett, T., 6.4</td>
<td></td>
</tr>
</tbody>
</table>
Lydic, R., 6.14

M
Ma, Y., 5.11
MacMillan-Crow, L. A., 7.6
Madden, M., 13.2
Madhavpeddi, L., 5.6, 16.8
Maley, N., 6.17
Malik, K., 7.13
Manautou, J., 14.3
Maranon, R. O., 7.11, 17.7, 17.9
Marcouiller, F., 13.3, 13.7
Maruyama, R., 16.2
Matthews, S., 15.8
Mauvais-Jarvis, F.*, 19.3
McCarthy, J., 17.5
McDonough, A., 7.1
Menazza, S., 12.2
Menk, P. T., 6.7
Mihalko, S., 6.14
Milic, N., 15.13
Milin-Lazovic, J., 15.13
Miller, C., 17.11
Miller, D., 13.1
Miller, V., 15.9
Mimaya, D., 6.10
Miskin, R., 5.9
Moiron, G., 7.10
Mozer, M., 14.5
Murphy, B., 7.2
Murphy, E.*, 12.2
Murphy, M., 16.3
Murphy, S., 7.3

N
Namugowa, A., 4.7
Navar, L. G., 6.1, 6.18
Nelson, M., 5.8, 6.12
Neufert, P. D., 6.2
Neves, K., 4.8
Nicholson, W. T., 17.3
Norwood, J., 13.2
Novais, I., 17.6
Novak, J., 15.10, 17.5
Novotna, J., 16.6
Nowicki, S., 7.10
Nwali, E., 5.2

O
Oddo, E. M., 7.10
Ogola, B., 4.1
Olapade-Olaopa, E., 6.6
Oliveira, E., 4.9
Oliver, V., 4.8
Osol, G. Y., 20.1
Osei-Owusu, P., 15.5
Owens, E., 15.5
Ozark, P., 6.4, 6.21
P
Pabbidi, M., 14.2
Padawer, T., 5.7
Paley, A., 15.3, 15.6, 15.11
Pasterkamp, G., 4.2, 4.3, 4.4
Patil, C. N., 7.11, 17.7, 17.9
Pfister, S., 13.4
Pingali, A., 3.6, 7.13
Phillips, P., 13.1
Pluznick, J., 6.19
Pogrebna, V., 6.4
Pollock, D., 7.7
Pillow Jr., D., 17.4
Powell, D., 16.3
Prieto, M. C., 6.1, 6.18
Protenko, Y., 3.10
Puga, G., 17.6
Puri, N., 7.9
R
Rahimian, R., 6.8
Ralph, D., 7.1
Ralph, E., 6.7
Ramalho, L., 4.8
Raman, P., 14.7
Ramirez, R., 15.10, 17.5
Ranadive, S., 15.9
Rayalam, S., 17.11
Reckelhoff, J. F., 7.11, 17.7, 17.8, 17.9
Reese, L., 6.3
Regitz-Zagrosek, V.*, 12.3
Reho, J., 15.10
Reiakvam, W., 4.10, 17.2
Renfro., J. L., 6.2
Respress, J., 5.5
Rexrode, K.*, 21.1
Reyes, L. A., 14.8, 17.10
Richards, J., 13.1, 13.2
Roberts, J., 6.5
Romero-Aleshrie, M. J., 17.4
Romero, D. G., 17.8
Rosales, C. B., 6.18, 19.4
Rouch, A., 6.16
Rousset, D., 13.3
Ruginski, S., 4.8
Rutkai, J., 14.1
Ryan, M.*, 2.3, 15.4
S
Samson, W. K., 8.3, 15.8
Sangüesa, G., 6.8
Santillan, M.*, 20.3
Santollo, J., 7.12
Sarfert, K., 6.5
Sasser, J.*, 15.4, 20.2
Schlieweifer, M., 13.1
Schmuckie, L., 16.3
Schnabel, R., 4.2
Sedivy, V., 16.6
Serrador, J., 14.8, 17.10
Serviente, C., 12.7, 17.12
Shainberg, A., 5.9
Shaligram, S., 6.8
Shill, D., 17.12
Singler, K., 2.6, 6.17
Siwik, D., 5.1
Sloboda, D.*, 11.3
Smith, C., 6.2
Snow, S., 13.1
Sorond, F., 17.10
Sponton, C., 4.9
Spradley, F., 3.2, 15.3, 15.4, 15.6, 15.11, 20.5
Stachenfeld, N.*, 12.1
Stauffer, B., 4.10, 17.1, 17.2
Stein, L., 15.8
Sullivan, J.*, 2.2, 6.7, 7.4
Sun, J., 12.2
Swar, B., 6.16
Szczepaniak, L., 5.8, 6.12
T
Tanno, H., 16.2
Thekkumkara, T., 4.1
Theithi, T., 6.18
Thirunavukkarasu, S., 7.13
Thomas, D., 15.2
Thomas, M., 17.5
Thomas, Z., 17.5
Thompson, M., 16.8
Thunhorst, R., 16.7
Tipparaju, S., 5.7
Ton, A., 5.3
Toporikova, N., 6.4, 6.5, 6.21
Torres, M., 6.2
Tostes, R., 4.8
Trainer, R. A.*, 3.1
Tran, A., 7.1
Trommer, E., 7.2
Tufik, S., 16.5
Tur, J., 5.7

U
Underwood, A., 17.5

V
van der Laan, S. W., 4.3
van Setten, J., 4.3
Veeras, L., 7.1
Vesna, G., 15.13
Vijayavel, N., 14.7
Vizek, M., 11.5, 16.6
Vlachovsky, S. G., 7.10
Vrijenhoek, J., 4.4

W
Waldman, M., 5.9
Wallukat, G., 15.2, 15.7
Wang, H., 7.6
Wang, X., 6.13
Warrington, J., 15.1
Watnumocho, C., 6.16
Weil, B., 17.1
Weissgerber, T., 15.13, 20.7
Welling, P., 15.12
West, C., 15.12, 20.6
Wetton, P., 21.3
Whitworth, G., 6.21
Williams, J., 15.7
Witkowski, S., 17.12
Woodward, L., 17.5
Wu, J., 6.5
Wu, W., 7.3

X
Xiao, D.*, 11.1
Xue, B., 11.6, 16.7

Y
Yabluchanskiy, A., 5.11
Yanes Cardozo, L. L., 17.8, 17.9
Youachim, S., 2.1
Yosten, G.*, 8.3, 15.8
Yun., Y., 15.10

Z
Zamarron, B., 6.17
Zanesco, A., 4.9, 17.6
Zang, Y., 4.1
Zatschler, B., 4.6
Zeller, T., 4.2
Zhang, H., 7.11, 17.7
Zhou, X., 7.6
Zimmerman, M., 7.2
Zono, S., 6.9
Special Call for Papers
AJP-Regulatory, Integrative and Comparative Physiology

Sex and Gender Differences in Cardiovascular, Renal and Metabolic Diseases

The Editor-in-Chief of the *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* and the Physiology and Gender Conference organizers have provided an additional platform to illuminate the research from this vital conference. Original research articles related to the Physiology and Gender Differences in Cardiovascular, Renal and Metabolic Diseases are invited. These papers will be published starting in 2016 and all manuscripts accepted from this Call for Papers will be included in a unique online article collection to further highlight this important topic.

ajpregu.org/gender

Check out the flash drive on your meeting lanyard for more information!